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Atmospheric deposition of nitrogen (N) and sulfur (S)  
are two key drivers of biodiversity decline of plants world-
wide after habitat loss and climate change1. Nitrogen deposi-

tion reduces biodiversity through several mechanisms2, including 
soil acidification and subsequent foliar nutrient imbalances3,4, 
increased pest pressures on nutrient-enriched foliage5 and stimulat-
ing growth of opportunistic species allowing them to outcompete 
local neighbours through light limitation or other processes6–8. 
Sulfur deposition primarily reduces diversity by acidifying soils, 
leading to base cation imbalances, as well as frost sensitivity and 
inhibition of germination3,9,10.

In the United States, levels of N and S deposition have declined 
after decades of successful air quality policies under the Clean Air 
Act11–13. These amendments have reduced total N and S deposition 
in the eastern United States by an average of 23.7 and 56.9%, respec-
tively, between 2000–2002 and 2013–2015 (ref. 12). Nevertheless, 
N and S deposition both remain five to ten times above estimates 
of pre-industrial levels (0.4 kg N ha-1 yr-1 and 0.1 kg S ha-1 yr-1, ref. 
13) across most of the country. Nitrogen deposition trends are flat 
or increasing in many areas outside the eastern United States12,14. 

Furthermore, the composition of N deposition is shifting from reg-
ulated forms (oxidized NOx) to mostly unregulated forms (reduced 
NHx, except as a portion of particulate matter which is regulated)12,15.

Current levels of both N and S deposition remain above many 
known thresholds (termed ‘critical loads’) for detrimental ecologi-
cal effects13,16–18 and probably will remain so in the near future13,18. 
To date, most critical loads have been developed for ecosystems or 
ecoregions rather than species2,16,19, although species-level estimates 
are beginning to emerge in Europe20,21. Simkin et  al.22 compiled a 
database of herbaceous plant species composition across 15,136 
plots in the contiguous United States22. Comparing this with the 
spatial gradient of N deposition they found that total richness had 
a unimodal association with N deposition (one that was steeper 
in more acidic soils and in grasslands compared with forests) and 
that decreases in total richness were potentially occurring in 24% of 
plots22. However, it was not reported which among the 4,000 species 
in that dataset are potentially vulnerable, where they occur, their 
conservation value and whether any physiological traits may be 
associated with sensitivity versus insensitivity. Many of these spe-
cies are too rare to confidently assess but for those that remain we 
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fill these critical knowledge gaps with a comprehensive analysis of 
the Simkin et al.22 database.

results and discussion
Species responses to N and S deposition. We found that 348 spe-
cies had sufficient data to analyse according to our criteria. Of 
these, 70% (243 species) were associated with decreasing prob-
ability of occurence with increasing N or S deposition along some 
portion of the deposition gradient. For some of these species, how-
ever, even the best models did not explain much variation in the 
probability of occurrence (area under curve (AUC) < 0.7 or coef-
ficient of determination R2 < 0.1) because species distributions are 
a complex function of many factors including but not exclusive to 
those evaluated here (for example, historical land use, disturbance, 
ozone, grazing pressures, and so on). We focused on a subset of 198 
species that we considered had ‘robust relationships’ with the pre-
dictor variables included (AUC ≥ 0.7, R2 ≥ 0.1 and monotonically 
increasing, decreasing or unimodal relationships with N; Table 1, 
Supplementary Table 1 and Supplementary Fig. 1). Results for all 
348 species are in Supplementary Table 2. Of the subset of 198 spe-
cies, 54% had a unimodal relationship with N (107 species), 20% 
had a monotonically increasing relationship (40 species), 15% had a 
monotonically decreasing relationship (30 species) and 11% had no 
association with N deposition (21 species) (Fig. 1a–f). The steepness 
of these relationships and the N deposition associated with the high-
est species occurrence, also varied widely among species (Fig. 1).  
For S deposition, 62% had negative associations (123 species), 
whereas 22% had positive associations (43 species) and 16% had no 
association with S deposition (32 species). The steepness of these 
relationships also varied widely (Fig. 1g–i).

Most species had a negative association at some level of N or S 
deposition received (Table 1). This suggests that many species may 
be threatened by N and/or S deposition in the United States. The 
most common joint response by far was a unimodal relationship 
with N and a decreasing relationship with S (41% or 81 species, 
Table 1). This agrees with ecological theory23,24 as well as empiri-
cal16,22 and modelling25 studies, which show that low levels of N 
input can act to relieve nutrient limitation and enhance growth for 
many species22,23. Higher levels of N deposition reduce these ben-
efits and can acidify and enrich soils with nutrients, progressively 
excluding species unable to tolerate or capitalize on the new condi-
tions. The few species that decreased monotonically with N could 
be poor competitors in the community that persisted only in low 
N conditions. Greenhouse and field experiments demonstrate that 
such species may be out-competed due to light limitation brought 

on by growth of opportunistic neighbours6. The average N-response 
was for a negative association around 10 kg N ha-1 yr-1 (Fig. 1f), a 
common critical load from community-level research16,26. Sulfur 
deposition acidifies soils, explaining the large number of species 
that had negative associations with S (ref. 27). The few species with 
positive associations with S deposition may be acid tolerant species 
that benefit from the loss of competitors, rather than evidence of 
a fertilization effect from S. Sulfur-limitation can occur but such 
cases are rare in natural communities23,28. There is more evidence 
that a shift towards phosphorus (P)-limitation may occur with high 
N deposition29,30. In agricultural settings, S-limitation can occur but 
only when N and P are abundant31, which is probably not the case 
for our study plots.

Species-level critical loads. We then calculated N and S criti-
cal loads using partial derivatives of the best statistical model for 
each species (compare Simkin et al.22; Supplementary Information). 
Mean critical loads for N ranged from 3.2 kg N ha-1 yr-1 (Cirsium 
arvense) to 17.6 kg N ha-1 yr-1 (Solidago canadensis) (Fig. 2a).  
The intervals in Fig. 2a represent spatial variation in the critical 
loads, not error associated with the mean. Such variation reflects 
how species can have lower or higher critical loads in a particular 
location on the basis of covarying factors (for example, lower critical 
loads in more acidic conditions). This has been reported for habitats 
in Ireland21, where the critical load for a species may vary widely 
across habitats.

The wide variability for species-level N-critical loads across a 
species’ range demonstrates that vulnerability for any given species 
depends on its environmental context32,33. This is more realistic eco-
logically than a single value for a species; for example, adding 2 kg 
of N to a very N-limited site elicits a different response than would 
occur at a more fertile site. This wide variation, however, also cau-
tions against using any single critical load for most species. Instead, 
this supports using the partial derivative from multivariate mod-
els as we did, which retains relationships with relevant covariates, 
allowing us to refine estimates of the critical load using local edaphic 
or climatic factors (Supplementary Table 2; equations (1)–(4)  
in the Supplementary Methods).

Average critical loads could not be defined for species that mono-
tonically increased or decreased because thresholds (if present) are 
outside the range of the observed data (Fig. 2b). For these species 
there is no observed threshold in the probability of occurrence and 
thus a critical load cannot be quantified. This limitation is partly 
explained by the range of observational data for each species and 
partly by our approach. Only monotonic relationships with S were 
allowed for ecological and statistical reasons (see Supplementary 
Information) and more complex mathematical relationships (for 
example, sigmoid) were not explored, which may have revealed crit-
ical loads for some species. Supplemental analysis revealed that spe-
cies receiving a minimum N deposition greater than 4 kg N ha-1 yr-1 
were less likely to have unimodal and more likely to have decreas-
ing relationships (Chi2 = 28.04, P < 0.001; Supplementary Table 3). 
Short deposition gradients may be especially problematic analyti-
cally for species that only occur in the western United States.

Many species-level critical loads reported here and elsewhere  
are below community-level critical loads (for example, ~8–20 kg  
N ha-1 yr-1; refs. 2,20–22). This is expected given that community-level 
critical loads are essentially averages over sensitive and insensitive 
species. Many species critical loads reported here are lower than 
those from acid grasslands across Europe (around 8–22 kg N ha-1 yr-1;  
ref. 20) but comparable to those from Ireland (~2.8–19 kg N ha-1 yr-1; 
ref. 21). This may be explained because most of the plots from the 
acid grassland study were from the United Kingdom and mainland 
Europe34 where deposition rates are higher (8–35 kg N ha-1 yr-1),  
as opposed to the United States and Ireland where N deposition 
included lower levels (2–20 kg N ha-1 yr-1). The Irish study also  

Table 1 | Summary of responses and vulnerability to N and S 
deposition

S relationship

Decrease None Increase Total

N relationship Decrease 11a (6) 5b (3) 14c (7) 30 (15)

None 5b (3) 15d (8) 1e (1) 21 (11)

Increase 26c (13) 6e (3) 8f (4) 40 (20)

Unimodal 81c (41) 6c (3) 20c (10) 107 (54)

Total 123 (62) 32 (16) 43 (22) 198 (100)

The number of species out of the 198 (with percentages in parentheses) with robust results for 
N or S that monotonically decreased, showed no response, monotonically increased or had a 
unimodal relationship (N only) with N or S deposition. Species with ‘U-shaped’ N relationships  
(45 species) are omitted as not being ecologically realistic and species names in each category 
are in Supplementary Tables 1 and 2. Superscript letters represent levels of vulnerability: ahigh 
(decrease with both), bmoderate (decrease with one and unaffected by the other), cconditional 
(either contrasting relationships or conditional on the rate of deposition) or dneutral (no 
relationship with either). eSpecies that partially benefit (increase with one and unaffected by the 
other) and fspecies that strongly benefit (increase with both) are also indicated.
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found critical loads of a species could vary widely among differ-
ent habitats and bootstrapped intervals in a habitat were also often 
2–6 kg N ha-1 yr-1 wide21. We compared our results with critical loads 
for 304 European species (24 from acid grasslands in ref. 20 and 280 
across many habitats in Ireland in ref. 21). There were only eight 
species in common between our study and those (Supplementary  
Table 4, Supplementary Fig. 2) and only one that was present 
across all three (Campanula rotundifolia, Fig. 3). The critical 
load for C. rotundifolia reported here (7.9 kg N ha-1 yr-1 average,  
5.7–14.8 kg N ha-1 yr-1 for 5th−95th interval) compared well with 
estimates from Ireland (two habitats: 6.2 and 8.2 kg N ha-1 yr-1; from 
ref. 21) and all three estimates were lower than from European 
acid grasslands (13 kg N ha-1 yr-1; from ref. 20). The correspondence 
between our estimates and those from Ireland is encouraging since 
the methods were completely independent (TITAN analysis versus 
partial derivatives), suggesting both approaches are capturing simi-
lar ecological relationships. One advantage of our approach is the 
predictive equation that retains the associations among moderat-
ing factors. One advantage of the TITAN approach is that it is not 
restricted to any particular mathematical form.

Floristic quality of vulnerable species. We next assessed the floristic  
quality of species positively and negatively associated with N and S 
deposition. We were primarily concerned with the following ques-
tion: are the species that are potentially at risk highly valued natives 
or are they common or non-native species? We used results com-
piled from many plant surveys across the United States on the basis 
of ‘coefficients of conservatism’ (C values: 0–10) assigned to indi-
vidual plant species (Ci) on the basis of their tolerance to human 
disturbance and the degree to which the species represent natural 
undisturbed habitats35. Higher C-scores are associated with higher 
quality flora and habitats, with non-natives receiving a score of zero. 
Natives range from 1 to 10 on the basis of their tolerance to distur-
bance (higher C-score for lower tolerance). Of the 137 species that 
were associated negatively with N along some portion of the gradi-
ent, roughly 84% were highly or moderately valued (that is, Ci ≥ 7, 
4 ≤ Ci ≤ 6, respectively). There was a negative correlation between 
C-scores and the species average N-critical loads (Pearson’s coeffi-
cient of correlation, r = –0.260, P = 0.001), indicating that species of 
higher conservation value had lower critical loads. Of the 123 spe-
cies that were associated negatively with S deposition, ~82% were of 

0 5 10 15 20

0.0

0.4

0.8

Nitrogen deposition (kg ha−1 yr−1)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

a

0 5 10 15 20

0.0

0.4

0.8

Nitrogen deposition (kg ha−1 yr−1)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

b

0 5 10 15 20

0.0

0.4

0.8

Nitrogen deposition (kg ha−1 yr−1)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

c

0 5 10 15 20

0.0

0.4

0.8

Nitrogen deposition (kg ha−1 yr−1)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

d

0 5 10 15 20

0.0

0.4

0.8

Nitrogen deposition (kg ha−1 yr−1)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

e

0 5 10 15 20

0.0

0.4

0.8

Nitrogen deposition (kg ha−1 yr−1)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

f

0 10 20 30 40

0.0

0.4

0.8

Sulfur deposition (kg ha−1 yr−1)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

g

0 10 20 30 40

0.0

0.4

0.8

Sulfur deposition (kg ha−1 yr−1)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

h

0 10 20 30 40

0.0

0.4

0.8

Sulfur deposition (kg ha−1 yr−1)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

i

Fig. 1 | Species response curves for nitrogen (177 species) and sulfur (166 species). a–e, For N, response types are decreasing (a, 30 species), unimodal 
(b–d, 107 species) or increasing (e, 40 species). Species with unimodal relationships are split into three panels to improve readability on the basis of the 
N deposition where probability of occurrence was highest (b, peak at 3.1–10 kg N ha−1 yr−1, 39 species; c, peak at 10.1–12 kg N ha−1 yr−1, 32 species; d, peak 
at 12.1–19 kg N ha−1 yr−1, 36 species). g,h, For S, response types are decreasing (g, 123 species) or increasing with S deposition (h, 43 species). The average 
response across all species is shown for N (f) and S (i) as a solid black line and the 25th and 75th percentiles are shown in dotted black lines (individual 
species curves from panels a–e and g,h are shown in grey). Other factors are evaluated at the species-level average. Species with no relationship (21 and 37 
species for N and S, respectively) or a U-shaped relationship with N (45 species) are not shown.
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Fig. 2 | Spatial variation in species-level nitrogen critical loads. a,b, Nitrogen critical loads (CL) for 107 species with a unimodal-shaped relationship  
(a) and 50 species with a monotonic relationship (b) that either decreased (▾) or increased (▴) with N deposition. In a, the mean (circle), minimum  
and maximum (bars) and 25th to 75th percentile range (box) represent spatial variation (not error) in the critical load on the basis of covarying factors  
that affect sensitivity (more sensitive species have lower critical loads). In b, only point estimates are shown because the critical load for decreasers is 
below the minimum N deposition and the critical load for increasers is above the maximum (how far outside this range is not known). The 20 species with 
a ‘see-saw’ relationship are not shown because the average critical load is not meaningful.
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moderate-to-high conservation value. These include Muhlenbergia 
cuspidata, Lysimachia quadriflora and Prosartes lanuginosa, all 
highly valued native species (average C ≥ 7.8) of North America.

Regional and species vulnerability across the contiguous United 
States. To determine spatial patterns of vulnerability to N and S  
deposition, we calculated the percentage of species that were 
positively or negatively associated with local deposition in each 
12 × 12 km2 grid cell. Overall, more species were positively than 
negatively associated with N deposition. But, most eastern areas 
had significant fractions of decreasers (>15%; Fig. 4a,c). Out of 
the 3,122 grid cells containing one or more of the focal 198 spe-
cies, 75.8% had an exceedance for N deposition for one or more 
species and 24.3% had an exceedance of 50% or more unique spe-
cies in the grid cell (Fig. 4c). Hotspots of negative associations with 
N deposition included southern Minnesota, eastern West Virginia 
and scattered grid cells in the northeast, mid-Atlantic and midwest. 
There was wide variation in the fraction of species potentially at 
risk even in high N deposition areas, suggesting that fine-scale pro-
cesses affect local risk (for example, differences in species composi-
tion, historical land use, the degree of nutrient limitation and other 
stressors such as ozone that were not included22,32). Lower fractions 
of species at risk were estimated in the west, probably partly due to 
shorter N deposition gradients that did not make our threshold for 
assessment (see Supplementary Information).

Hotspots of decreasers with S deposition occurred throughout 
the United States, even in relatively low deposition areas in the west 
(Fig. 4b). Our leading explanation for this is the dominant mech-
anism for N is through eutrophication while the dominant effect 
for S is through acidification—thus, species and communities may 
benefit from low levels of N deposition which transitions to harm at 
higher levels, while species and communities are primarily harmed 
by S deposition. Another plausible explanation is that S deposition 
was not allowed to have complex non-linear patterns (for example, 
sigmoid, unimodal) that would facilitate a flat or positive response 
transitioning to a negative response. Notably, we found higher frac-
tions of increasers (>50%) with S in historically highly polluted sites 
like West Virginia, which could be indicative of a local community 
that has already shifted towards acid-tolerant species.

Of the 198 species with robust responses, critical loads were 
exceeded at more than half the observed sites for 17% (34 species) 
and 55% (108 species) for N and S, respectively. Because these plots 
are not a random sample across the conterminous United States (see 
Fig. 3), it is not possible to say how this translates to vulnerability 
across the entire range of each species.

Do functional traits predict vulnerability? Finally, we explored 
whether simple predictive relationships existed between species traits 
and their potential sensitivity to N deposition. Such relationships 
would yield a predictive tool for decision makers to apply to species 
lacking plot occurrence data across a deposition gradient. We found 
that simple plant functional groups (for example, functional group 
(FG), cotlyedon status (CS), and so on) were generally poor predic-
tors (all R2 < 0.02) of either the shape of the response or the critical 
load (Supplementary Table 5), although natives tended to have more 

negative relationships (P = 0.036) and lower critical loads (P = 0.028) 
than introduced species, perennial species tended to have lower criti-
cal loads than non-perennials (P = 0.046) and legumes tended to have 
more decreasers (P = 0.104). These broad trends are in line with eco-
logical theory, where native and perennial species tend to have traits 
focused on N-retention and slower growth and legumes rely partly 
or wholly on fixing atmospheric N, both strategies that may be more 
susceptible to competitive exclusion from opportunistic non-native 
or annual species36,37. Although consistent with ecological theory, 
these relationships were notably weak (for example, not all natives 
decreased with N deposition and not all invasives increased), rein-
forcing the notion that these broad groups may be less helpful than 
we’d like in describing ecological responses. Detailed information 
was available for nine traits: leaf nitrogen content (LNC), leaf carbon 
content (LCC), specific leaf area (SLA), vegetative height, (VH), leaf 
lignin content (LLC), leaf phosphorus content (LPC), leaf calcium 
content (LCaC), leaf potassium content (LKC) and leaf magnesium 
content (LMgC). We found physiological traits were much more pre-
dictive of the critical load and led to several predictive equations:

= . + . × + . × = . < . = (1)R P nCL(N) 6 20 7 32 LMgC 0 06 VH ; Adj 0 36 ; 0 001 ; 372

= . + . × = . < . = (2)R P nCL(N) 5 03 2 63 LNC ; Adj 0 22 ; 0 001 ; 552

= . + . × + = . < . = (3)R P nCL(N) 4 28 2 51 LNC CS ; Adj 0 32 ; 0 001 ; 55i
2

The best overall model (equation (1)) predicted that the N-critical 
load (CL(N)) was a two-factor model with LMgC (P < 0.001) and 
VH (P = 0.06). Leaf Mg is strongly associated with photosynthetic 
rates because it is a key element of chlorophyll38, while VH influ-
ences access to light. Thus, species that were more potentially vul-
nerable (for example, lower CLs) had lower photosynthetic rates 
and were shorter-statured as reported in many other site-specific 
studies7,16,24,36. Leaf Mg, however, is a trait not commonly available 
for most species and photosynthetic rates are also correlated with 
leaf N (ref. 39) (LNC and LMgC were highly correlated in our study: 
r = 0.57, P = 0.001). To develop an operational equation for wider 
use we examined relationships on the basis of more widely available 
traits (LNC, SLA and the six categorical traits). We found that LNC 
was also highly predictive (equation (2)) and adding a factor for cot-
yledon status (monocot, dicot, fern; CSi) improved the model fur-
ther (equation (3), CL(N) = +1.7, + 0.7 and −2.8 for dicot, monocot 
and ferns respectively) with no significant interaction in slope 
(P = 0.36). Nitrogen critial loads from the three equations were also 
correlated (all r > 0.65) and generally within ±1 and ±2 kg N ha-1 yr-1 
of one another (for 56 and 80% of species, respectively). This is the 
first instance we know of reporting a predictive equation for critical 
loads of individual plant species.

It is important to note our assessment of 348 species represents 
only about 10% of the species in the initial dataset and it is unknown 
whether species that were not assessed are more or less vulnerable to 
N or S deposition. Most species were excluded on the basis of rarity 
(3,643 had fewer than 50 presences) but many also had deposition 

Fig. 3 | Detailed example of species response. Generalized linear model results for C. rotundifolia (common name: harebell). a–h, Marginal probabilities of 
occurrence individually by term from the best model for N deposition (a), N × pH (b), N × S (c), S deposition (d), S × pH (e), soil pH (f), precipitation (g) 
and temperature (h). All terms: P < 0.01 (Supplementary Table 2. Black lines in main effect plots are average response and red lines are 95th confidence 
intervals. For interaction terms (b,c,e), the effect of the modifying term is shown as separate quartile lines (Q1–Q4). i–k, Also shown is a photo of the 
species (i), a range map from the USDA (j, ref. 58) and a plot map from this study (k). C. rotundafolia is a northern latitude wildflower that grows in 
drier, low-nutrient soils59. This species had a hump-shaped relationship with N (average critical load = 7.9 kg N ha−1 yr−1; 10th–90th percentile critical 
load = 5.9–10.6 kg N ha−1 yr-1) and a negative relationship with S. Interactions were statistically significant with little effect on marginal relationships, except 
for the N × S interaction, where the N effect was stronger if S deposition was low. The 10th–90th percentile reported here is similar to that reported for C. 
rotundafolia in Ireland21 and lower than that found in acid grasslands across Europe20. See Supplementary Fig. 1 for results for all 198 species.
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gradients that we considered too short relative to interannual varia-
tion to assess (3,433 had N deposition gradients < 7 kg N ha-1 yr-1). 

However, evidence from N fertilization experiments suggests that 
rarer species are more likely to be lost with N addition7,36.
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Causality and multicollinearity. It is difficult to confidently assign 
causality to deposition in a gradient study such as ours22,34. We 
addressed this by assessing correlations among predictor variables 
individually for each species and summarizing these as variance 
inflation factors (VIFs) for nitrogen (VIF-N) and sulfur (VIF-S) (see 
Supplementary Information). Lower VIFs mean less of a chance for 
spurious correlations to affect results. There were larger correlation 
concerns with S than N, with fewer species under the conventional or 
conservative cutoffs for S as opposed to N (Supplementary Table 6).  
Comparing the results for the 22 species with low multicollinear-
ity (both VIFs < 3) with the full set of 198 species yielded several 
insights. The proportion of species with decreasing and unimodal 
relationships with N was nearly identical between the two sets of 
species (14% versus 15% for decreasers, 50% versus 54% for uni-
modal; Supplementary Table 6). The same was true for species 
with decreasing relationships with S (Supplementary Table 6). 
However, in the set of species with low VIFs we found no species 
that increased with S and no species that showed no change with 
N (Supplementary Table 6). Thus, results are probably robust for 
species that decrease with N or S and for species with unimodal 
N-relationships. However, results for species that increase with S or 
show no change with N may be interpreted with caution. Given the 
large numbers of species tested, we also tested our results for pos-
sible Type I errors using a Holm–Bonferroni multiple comparisons 
adjustment40 and found that 66% of species relationships with N 
remained significant after such an adjustment (see Supplementary 
Information). Given decades of research documenting that climate, 
soil pH and atmospheric deposition affect plant communities, we 
assume relationships that lost significance after adjustment are 
probably still ecologically valid.

Conclusions and policy implications. Even though a correlative 
study such as ours cannot definitively assign causality, the conflu-
ence of findings from controlled experimental manipulations7,41–43, 
gradient studies such as ours21,34,44, communities tracked through 
time as deposition changes45,46 and dynamic modelling25,47, all sug-
gest that N and S deposition can alter plant community composi-
tion. We found that 70% of the 348 species assessed and 85% of the 
198 species that had a robust relationship, were negatively associ-
ated with N and/or S somewhere in the contiguous United States. 
Our results are unprecedented at this scale and in numbers of spe-
cies assessed in the United States, strongly indicating widespread 
vulnerability to N and/or S deposition and that species respond 
differently on the basis of local environmental context. The wide 
range of thresholds within species suggests that potential vulner-
ability is linked to local edaphic factors and atmospheric co-pollut-
ants. This work can help inform the review of the US Environmental 
Protection Agency (EPA) secondary standards for oxides of nitro-
gen, oxides of sulfur and particulate matter48 to identify species and 
regions of particular concern from these stressors.

Methods
Data assembly and species filtering. Simkin et al.22 compiled data from a variety 
of sources to develop a consolidated dataset that included plot level information 
for species composition (percentage abundance), temperature, precipitation, soil 
pH and N deposition for 15,136 plots nationwide. All variables were selected 
to represent long-term conditions at a site. Temperature and precipitation were 
30-year normals from PRISM (ref. 49), soil pH was from a combination of locally 
assessed empirical measurements and SSURGO (ref. 22) and N deposition was 
calculated as the sum of the 1985–2011 mean annual wet deposition interpolated 
from the National Atmospheric Deposition Program (NADP) plus 2002–2011 
CMAQ modelled mean annual dry deposition22. Updated deposition estimates 
from the Total Deposition project (TDEP, ref. 50) were not available at the time but 
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Simkin et al.22 reported good correspondence between our estimate and TDEP 
(r2 = 0.89, TDEP(2000–2012) = SimkinNdep(1985–2011) × 0.91 + 0.3; refs. 22,50). 
Total S deposition was calculated in the same manner as N deposition.

To filter plots and species to a subset to analyse, we restricted plots to those that 
were 100–700 m2 as was done in Simkin et al.22 to reduce effects of species−area 
relationships and removed all taxonomic groups that were only identified to genus 
or functional group. We excluded rare species by removing species with fewer 
than five records overall and sparse species that did not have at least five records 
or comprise 5% of records in at least one Alliance using the National Vegetation 
Classification system51. The second condition is needed because in a presence/
absence dataset such as ours, we needed to identify the ‘core community’ from 
which to draw the absences. This filtering reduced the number of plots to 15,223 
and species to 1,027. We then required that each species span an N deposition 
gradient of at least 7 kg ha-1 yr-1, reducing the number of plots to 14,041 and species 
to 348. The choice of a 7 kg ha-1 yr-1 gradient was arbitrary but was guided by the 
assumption that the spatial gradient of deposition should exceed interannual 
variation in N deposition (often 2–3 kg ha-1 yr-1; ref. 52) by about double to detect a 
spatial trend. See Supplementary Information for more details.

Species analysis. We performed binomial generalized linear models separately 
for each species on presences and absences from the set of Alliances that were 
considered its core community. We ran all possible models using 12 candidate 
terms: N deposition (Ndep), S deposition (Sdep), precipitation (P), temperature 
(T), soil pH (pH), Ndep2, P2, T2, pH2, Ndep × pH, Sdep × pH and Ndep × Sdep. 
Rationale for individual terms is described in the Supplementary Information.  
To prevent model overfitting, we required there to be at least five detections per 
model term (for example, for the full model with all 12 predictors plus the intercept, 
the species was required to have 65 observations). We compared all remaining 
models using Akaike Information Criterion corrected for small sample size (AICc) 
and AUC and selected the best model as the one that optimized both AICc and 
AUC. We did this by first examining all models with an AICc within 2.0 of the best 
overall model (which are considered statistically indistinguishable, ref. 53) and then 
selecting the model with highest AUC. We assessed bivariate correlations among 
predictors using Pearson’s correlations between N or S and all other factors and 
multivariate correlations among predictors using VIFs between N or S and all other 
main effects in the best model. We interpret our results using a conventional cutoff 
for VIF of 10.0 (ref. 54) and a conservative cutoff of 3.0. A VIF of 10.0 and 3.0 mean 
that one-tenth and one-third of the information, respectively, in the predictor is 
uncorrelated with other predictors. Given the large number of species assessed, we 
checked for multiple comparisons using a Holm–Bonferroni adjustment40.

Critical loads estimation. Critical loads are formally defined as ‘quantitative 
estimates of exposure to one or more pollutants below which significant harmful 
effects on specified sensitive elements of the environment do not occur according 
to present knowledge’55. Here we interpret the N deposition value above which  
the estimated probability of occurrence begins to decline as an estimate of the 
critical load. We estimated the critical load using the same approach in Simkin 
et al.22 by taking the partial derivative of the best statistical model with respect 
to N and to S deposition and solving for N or S deposition. Using this approach, 
the critical load can be an expression, where the deposition value associated with 
the CL depends on other covarying terms (for example, lower under more acidic 
conditions or when S deposition is already high). See Supplementary Information 
for further details.

Assessment of floristic quality. We used C-scores (1–10) from various Floristic 
Quality Assessments (FQAs) conducted across the United States. FQAs are plant 
surveys conducted by professional botanists to determine the quality of the flora 
in a particular area35, usually as part of the process of applying for a state or federal 
permit. C-scores are assigned to individual plant species by professional botanists 
on the basis of their tolerance to human disturbance and the degree to which the 
species represent natural undisturbed habitats35. Non-native species are assigned a 
score of zero and natives are assigned a score from 1–10, with ten being the highest 
conservation value. Freyman et al.56 compiled C-scores from 30 inventories across 
the country representing >100,000 species into an online tool called the Universal 
Floristic Quality Assessment Calculator (https://universalfqa.org/about). We 
used this database to assess the C-scores for all 348 species analysed in our study, 
averaging across inventories if the C-score for a species differed across inventories. 
We consider species with C-scores 7–10 and 4–6 to be of ‘high’ and ‘moderate’ 
conservation value, respectively (see Supplementary Information and ref. 56).

Relating plant traits to critical loads. We ran three analyses to relate plant traits 
to critical loads. First, using the focal 198 species, we used contingency analyses to 
relate the shape of the relationship (categorical response; increase, decrease, flat, 
unimodal for N; increase, decrease or flat for S) separately to six plant functional 
groups from the USDA PLANTS database (https://plants.usda.gov/): (1) functional 
group (forb, graminoid), (2) cotyledon status (monocot, dicot, fern), (3) invasive 
(yes, no), (4) life history (perennial, non-perennial), (5) native status (native, non-
native) and (6) whether the species was in the Fabaceae family or not (to capture 
the potential for N-fixation). Second, we used analysis of variance (ANOVA) to 

assess whether the average critical load for the focal 198 species differed among the 
same six plant functional groups. Results are in Supplementary Table 5. The highly 
imbalanced composition of the different combinations of groups limited our ability 
to examine combinations of characteristics (for example, introduced grasses). 
Third, detailed trait information was available for a subset of 98 species for nine 
traits: LNC, LCC, SLA, VH, LLC, LPC, LCaC, LKC and LMgC. We used trait 
information from one region (Wisconsin, Don Waller personal communication) 
rather than from different geographic locations (for example, the TRY database57) 
to limit the degree to which geographic variation in trait values could confound 
variation among species. We ran all possible linear models relating 16 traits  
(six plant functional groups above, nine physiological traits and the species C-score)  
as candidate predictors, to the average critical load from each species. We 
compared models with AICc and explored many different competing model 
structures. Not all combinations of traits were available for all models, explaining 
the differences in sample sizes.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current study are 
available in the EPA Environmental Dataset Gateway repository (https://edg.epa.
gov/metadata/catalog/main/home.page) at https://doi.org/10.23719/1500914.
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plot dataset compiled from many different sources and totaling  ~14,000 plots non-randomly distributed across the contiguous U.S. 
There is no network of random plots across the country for herb species in the U.S., so this is the best option available for such an 
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Sampling strategy This is the largest available dataset for the U.S. and is the result of an extensive effort described in Simkin et al. (2016), where the PIs 
sent an email to ECOLOG, and contacted individual PIs at various universities, state agencies, and other organizations, over a period 
of two years, to compile all available data on herb species in the U.S. 

Data collection No data were collected in this effort. Source data collection varied across the 14 datasets, as described in Simkin et al. (2016), but 
always comprised of field crews that went into the field and estimated the relative abundance of species in a plot using either visual 
estimation with reference cards, or some other locally determined means. 

Timing and spatial scale Plot data were collected from 1990-2013. We excluded plots that were outside of the 100-700 m^2 range to remove the effect of 
area on our assessment. 

Data exclusions We excluded plots that were smaller than 100 m^2 and larger than 700 m^2 to remove the effect of area, and excluded plots 
sampled before 1990 to better align with the deposition and climate data. We also excluded plots where plants were not identified 
to species. 

Reproducibility There was no experiment conducted, so no reproducibility was assessed. This is a gradient assessment, where the probability of 
occurrence for a species is compared across a deposition gradient. 
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field work. These answers are assuming "Yes" for completeness. 
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