SPECIES RESPONSES TO NITROGEN FERTILIZATION IN HERBACEOUS PLANT COMMUNITIES, AND ASSOCIATED SPECIES TRAITS

Ecological Archives E089-070

ELS A E. CLELAND,1 13 CHRIS M. CLARK,2,14 SCOTT L. COLLINS,3 JOSEPH E. FARGIONE,4 LAURA GOUGH,5 KATHERINE L. GROSS,6 DANIEL G. MILCHUNAS,7 STEVEN C. PENNINGS,8 WILLIAM D. BOWMAN,9 INGRID C. BURKE,10 WILLIAM K. LAUENROTH,10 G. PHILIP ROBERTSON,6 JULIET C. SIMPSON,11,15 DAVID TILMAN,2 AND KATHARINE N. SUDING12

1 National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California 93101 USA
2 Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108 USA
3 Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131 USA
4 The Nature Conservancy Midwestern Resource Office, 1101 West River Parkway Suite 200, Minneapolis, Minnesota 55415 USA
5 W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060 USA
6 Forest, Rangeland, and Watershed Department and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado 80523 USA
7 Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 USA
8 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309 USA
9 Graduate Degree Program in Ecology, Natural Resources Ecology Laboratory, Department of Forest, Rangeland, and Watershed Stewardship, Colorado State University, Fort Collins, Colorado 80523 USA
10 Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106 USA
11 Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697 USA

Abstract. This synthetic data set contains plant species relative abundance measures from 35 nitrogen (N) fertilization experiments conducted at 10 sites across North America. The data set encompasses the fertilization responses of 575 taxa from 1159 experimental plots. The methodology varied among experiments, in particular with regard to the type and amount of N added, plot size, species composition measure (biomass harvest, pin count, or percent cover), additional experimental manipulations, and experimental duration. At each site, each species has been classified according to a number of easily identified categorical functional traits, including life history, life form, the number of cotyledons, height relative to the canopy, potential for clonal growth, and nativity to the United States. Additional data are available for many sites, indicated by references to publications and web sites. Analyses of these data have shown that N enrichment significantly alters community composition in ways that are predictable on the basis of plant functional traits as well as environmental context. This data set could be used to answer a variety of questions about how plant community composition and structure respond to environmental changes.

Key words: database; fertilization; functional trait; nitrogen; plant community; synthesis.

The complete data sets corresponding to abstracts published in the Data Papers section of the journal are published electronically in Ecological Archives at (http://esapubs.org/archive). (The accession number for each Data Paper is given directly beneath the title.)