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Ecologists struggle to measure complex environmental
variables that change rapidly in space and time. To

date, environmental monitoring and measurement have
been limited by methodology, particularly the types of
field-based sensors available to ecologists, their costs, and
the constraints imposed by the need to physically wire
sensors to stationary data loggers. These limitations usu-
ally lead to suboptimal placement of a few sensors within
reach of data loggers, rather than in locations that opti-
mize measurement of the variable of interest. Small, inex-
pensive wireless sensors (eg Johnston et al. 2004) coupled
with the widespread availability of low-cost wireless data
transmission infrastructure (eg Peterson et al. 1995;
Atkins et al. 2003) will free us from a wired world and rev-
olutionize our ability to measure environmental variables
at appropriate spatial and temporal scales (Porter et al.
2005; Hart and Martinez in press).

Although ecologists are increasingly aware of the
power of sensor networks and are involved in the devel-
opment of new environmental sensors (Palmer et al.
2004), discussion thus far has focused on how such net-
works will increase our ability to gather data at spatial
and temporal scales appropriate for understanding
regional ecological phenomena (Porter et al. 2005).

Although these sensor networks will revolutionize our
ability to measure and monitor the environment, they do
pose huge data analysis and management challenges that
will be new to most ecologists. To date, in the ecological
literature, there has been little explanation of the capa-
bility of sensor networks to not only collect vast amounts
of data, but also to process, analyze, summarize, and inter-
pret such data in both passive ecological monitoring con-
texts and active experimental settings.

One approach to this data richness problem is to con-
ceptually reduce a sensor network and associated cyberin-
frastructure to three simplified components that are com-
mon to many experimental setups: (1) the sensor, which
is measurement specific; (2) a sensor network that gathers
and transmits sensor data; and (3) the end user who ana-
lyzes and interprets these data with a particular question
in mind. All subcomponents are linked by cyberinfra-
structure, including hardwire transmission networks (eg
the Internet), computers, data archives, and analytical
and graphical software. In this stylized deconstruction,
the sensor and the user are problem specific, whereas the
sensor network can be generalized across different appli-
cations. However, sensor networks have the potential to
integrate these components in useful and novel ways.
Although we traditionally think of data processing as
occurring at the user end of the transmission sequence,
many sensor networks have the capacity for embedded
computing, an important capability that should be
exploited by ecologists (Delin and Jackson 2000; Estrin et
al. 2003). Taking advantage of this technology may there-
fore require shifts in experimental design towards distrib-
uted and more real-time data screening and analysis, and
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ultimately adaptive experimentation (Cook et al. 2005),
hypothesis formulation, and testing. In short, the net-
work itself produces information in a usable form from
data (Delin 2002; Delin et al. 2005). 

In this article, we illustrate the potential ability of sen-
sor networks to function beyond the acquisition of large,
complex data streams. To do so, we briefly present results
from an ongoing experiment at the Sevilleta Long-term
Ecological Research (LTER) site that uses a wireless sen-
sor network, the Sensor Web, to measure microclimate
beneath different species of native desert shrubs. We then
highlight the fundamentals of Sensor Web technology
and describe how the sensor network itself can be used for
data quality assurance and quality control, data manipu-
lation, and eventually actuation – the explicit coordi-
nated and distributed control of experimental infrastruc-
ture based on in-situ data processing. 

� Islands of fertility

Aridland ecosystems worldwide are undergoing dramatic
changes in response to a variety of environmental drivers
(Archer et al. 1995; Fenn et al. 2003). One consequence
of these pressures in many semiarid regions worldwide is
desertification and degradation, including conversion of
C4-dominated grassland to C3-dominated shrub- and
woodland environments (Geist and Lambin 2004).
Desertification has substantial ecological consequences,
including altered surface and subsurface hydrology,
reduced biodiversity, diminished capacity to retain nutri-
ents, altered carbon storage capacity, and altered soil
resource heterogeneity (Jackson et al. 2002; Briggs et al.
2005), as resources are increasingly concentrated in
“islands of fertility” beneath shrub canopies.

Aridland plant communities are characterized by rela-
tively distinct patches of vegetation with intervening
bare areas of soil (Peters et al. 2006; Figure 1a). The orig-
inal island of fertility model focused on how the local dis-

tribution of soil resources changed, from relatively uni-
form to increasingly concentrated beneath plant canopies
(Schlesinger et al. 1990). In fact, soil resources are much
higher beneath grass and shrub canopies, as compared to
bare soil patches at the Sevilleta (Keift et al. 1998). Shrub
encroachment not only alters the distribution of soil
resources but may also affect local microclimate. At the
Sevilleta we asked the question, “Are all islands of fertil-
ity equal?” We were particularly interested in determin-
ing how microclimate differed beneath three common
native shrub species that have increased in abundance
locally and regionally: the semi-evergreen creosotebush
(Larrea tridentate); honey mesquite (Prosopis glandulosa
var torreyana), a small deciduous tree; and one-seeded
juniper (Juniperus monosperma), an evergreen shrub.
Although this is a relatively straightforward experiment,
we chose this design to learn more about how different
species modify their local environments, and to assess the
longevity and durability of an environmental sensor net-
work in a relatively harsh environment. In the process,
we gathered extensive data streams that can be used as
test beds for embedded data harvesting algorithms and
estimation of data error rates within a long-running sen-
sor network, in this case a technology called the Sensor
Web (Delin 2002), developed at NASA’s Jet Propulsion
Laboratory. 

� Sensor Web

The Sensor Web (www.sensorwaresystems.com) is a flex-
ible network of spatially distributed sensor platforms
(pods) that wirelessly communicate with each other
(Figure 1b). Advantages include synchronous measure-
ments of environmental variables and a unique data
transmission protocol that allows every pod to share data
with every other pod throughout the network at each
measurement cycle. This data sharing protocol provides
an ideal opportunity for embedded data processing within

Figure 1. (a) Desert grassland vegetation with scattered creosotebush (Larrea tridentate), showing the distribution of vegetation,
shrub islands, and bare soils characteristic of aridland ecosystems. (b) Sensor Web v3.1 pod underneath a juniper tree (see
http://sev.lternet.edu/research/SWEETS/index.html for a site map and access to Sensor Web data). 
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microclimate variables (Figure 2) and
the potential for using sensor networks
in ecological research. Clear differences
in soil temperature at two depths and
light availability occur between shrub
canopies and open areas. In both winter
and summer, daily temperature oscilla-
tions in bare areas are greater than
under creosotebush. Surprisingly, maxi-
mum soil temperatures beneath some
shrubs are actually higher than in open
areas, a result of differences in soil
albedo within different microenviron-
ments; beneath shrubs, the soil is cov-
ered by organic matter, which darkens
the surface and increases heat absorp-
tion, particularly during mid-summer.
As a result, during July the average
daily maximum temperature in the
shallow soils under juniper was signifi-
cantly higher than in open areas or
under the canopy of creosotebush, and
to a lesser extent under mesquite
(Figure 3). Nocturnal temperature min-

ima were slightly lower under shrubs than in open areas,
and maximum daily light levels were lowest under cre-
osotebush. Clearly, not all resource islands are equal,
which probably has implications for the distribution and
abundance of plant and animal species associated with
resource islands in aridland environments.

� Embedded processing

Post hoc analyses such as our examination of shrub micro-
climates depend on the quality of the data generated by
sensors and sensor networks. Indeed, the deployment of
larger and more complex sensor networks will yield huge
and ever-growing datasets, which will increase the need
to automatically screen, check, and process data quickly
and efficiently. These challenges suggest the need for ana-
lytical solutions that automatically perform statistical
analyses concurrently. This, in turn, will provide the
opportunity for validation of ecological hypotheses in real
time by the instrument itself, shifting the burden of data
analysis and its logistical costs and delays away from the
researcher and onto the sensor network. For example,
because it is a temporally synchronized, spatially distrib-
uted network, the Sensor Web allows for analytical proce-
dures to be easily programmed into the network, so that
data quality can be assessed during every measurement
interval and data summaries can be generated at any
desired measurement interval. 

In the future, large sensor networks will measure multi-
ple environmental variables at short time intervals and
operate over large areas for years. Although the Sensor
Web cluster deployed at the Sevilleta LTER has only a
modest number of pods, research platforms, such as the

the sensor network itself. Because pods can be located as
far as 100 m or more apart, sensor networks can greatly
expand the spatial extent of any experimental context,
allowing a more flexible statistical design than if sensor
placement is limited by wired links to data loggers. In the
present case, we were able to measure several microenvi-
ronmental variables under individual shrubs that were
widely scattered along a 300 m transect. Cost-effective
sensor networks, such as the Sensor Web, thus provide
new avenues for research design, data collection, and
analysis.

To measure microclimate variation at the Sevilleta, in
October 2003 we placed three Sensor Web pods (v3.1)
each in randomly selected open areas, and under the east
side canopy of three individuals of each shrub species (12
pods in total), arrayed along a 300 m transect. An addi-
tional pod served as a data relay, while a 14th pod served
as the mother pod, which is connected to a laptop that
contains the database and serves as a portal into the sys-
tem via the Internet. Sensors on each pod measure soil
temperature at 1 and 10 cm depths, soil moisture at 10 cm
depth, relative humidity, air temperature, and light at 5
minute intervals. The pods are powered by solar-assisted
batteries, providing virtually unlimited field life. Sensor
Web data from the Sevilleta are available at
http://sev.lternet.edu/research/SWEETS/index.html.Exa
mple data streams are shown in WebFigure 1a and b.

�Microclimate in islands of fertility

A complete analysis of microclimate differences between
shrub species and open areas is not possible or appropriate
here. Rather, we provide an analysis of three mid-summer
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Figure 2. Average daily ranges (minimum, maximum) of light flux, air temperature,
and shallow soil temperature under creosotebush (Larrea tridentate), honey
mesquite (Prosopis glandulosa var torreyana), and juniper (Juniperus
monosperma), and bare soil in July 2004, at the Sevilleta LTER site in New
Mexico. 
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cols. Moreover, these properties permit the use of a data
quality assurance scheme that is simple enough to be
embedded within the sensor network itself (see Panel 1).
That is, based on real-time data streams, the network
itself can assess whether data values fall within some pre-
determined level of statistical confidence and, if not,
these values can be excluded and identified as errors. In
addition, missing values can be inferred using similar
algorithms (Larkey et al. unpublished). In practice, qual-
ity assurance algorithms can be employed for each mea-
sured quantity within a subset of neighboring sensors, or
for averages of multiple sensors in comparable habitats. In
this way, sensor networks can be configured to produce
knowledge from the raw data, rather than just providing a
passive stream of data to the end user. 

Strategies for data quality assurance, as illustrated in
Panel 1, represent a vital first step in data processing that
yields a constant statistical summary, which can be
reported and stored in a permanent database along with
the raw data. Because most natural data quality assurance
strategies rely on the statistical comparison of measure-
ments at different sensors, they also produce immediate
statistical comparisons of data among contrasting envi-
ronments or time intervals, or between treatment and
control areas in ecological experiments. In this way, sta-
tistical syntheses of important ecological variables are
naturally generated in tandem with ensuring data quality.
Shifting data analysis to the network allows the sensor
network not only to detect naturally anomalous events
corresponding to errors, but also to identify other infre-
quent but important environmental dynamics, such as
rainfall pulses in arid environments, which lead to rapid,
spatially coherent, and time-correlated changes in multi-

National Ecological Observatory
Network, envision sensor networks
with hundreds or even thousands of
sensors. As sensor networks con-
tinue to offer better spatial cover-
age and include remote areas, prob-
lems with data quality assessment,
storage, retrieval, and manipulation
will increase quickly, outstripping
traditional human resources dedi-
cated to offline analysis. Shifting
portions of data analysis from the
user to the network itself will there-
fore no longer be simply a matter of
convenience, but a very practical
necessity (Delin and Jackson 2000;
Delin 2002; Larkey et al. unpub-
lished).

A simple first step in data pro-
cessing is to identify and eliminate
erroneous sensor readings; these
may occur for many reasons,
including the occasional corrupted
sensor measurement or data trans-
mission error. Even if data error rates are very small (eg
< 0.001%), large sensor networks with frequent data
acquisition protocols will generate potentially hundreds
or thousands of error measurements annually. For exam-
ple, the 12-pod Sensor Web array at the Sevilleta LTER
makes six environmental measurements at each node
every 5 minutes, yielding more than 12.6 million data
points annually. Even if data error rates are exceptionally
low, eg 1 in 10 000, then about 1260 data values will be
potentially erroneous each year, and the number of errors
will increase with the size and complexity of the sensor
network. Although small, such error frequencies could
potentially affect overall data quality, thereby possibly
creating erroneous action in autonomous systems, as well
as reducing the reliability of comparative analyses. 

Data analysis design choices must be balanced between
the need for data quality assurance and constraints
imposed by limited memory and processing capabilities
within the network. Automatic procedures to assess envi-
ronmental data quality, for example, pose particular chal-
lenges for standard statistical treatments because most
environmental data, such as air temperature or soil water
content, are non-stationary, changing in quasi-periodic
but unpredictable ways over daily and seasonal cycles.
Nevertheless, simple and practical ways to deal with such
variations are being developed (Panel 1) that exploit the
spatially distributed nature of sensor networks. These pro-
cedures rely on explicit features of data collection proto-
cols, including effectively synchronous measurements
and local data sharing over sets of nearby sensors within
the network. If these criteria are met, then the large data
streams generated by a sensor network become an asset,
for use in statistically based data quality assessment proto-

Figure 3. Photograph of a warming apparatus in a new nighttime warming, winter
rainfall, N-deposition experiment at the Sevilleta LTER site in New Mexico.
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ple environmental variables (Potts et al. 2006).
Additional algorithms based on strategies for anomaly
detection, similar to those used here for quality assurance,
can then be implemented to increase or decrease sam-
pling frequency in response to environmental triggers.
Such adaptive sampling algorithms can be used to reduce
data collection rates at times when little change is occur-
ring and then to rapidly increase them whenever it
becomes necessary to capture changes in environmental
conditions at high spatial and temporal resolution. It will
also be possible to autonomously trigger sampling when-
ever conditions are judged to be sufficiently interesting by
the network (Delin 2002). 

One of the least discussed aspects of sensor networks in
the ecological literature is the potential for coordinated,
distributed control and actuation – the use of
autonomous determination of physical changes in the
environment to control experimental infrastructure. For
example, at the Sevilleta LTER we recently established a
multifactor environmental change experiment in which
we manipulate nighttime temperatures, winter rainfall,
and nitrogen deposition to determine their individual

and combined effects on creosotebush encroachment
into grassland. Our nocturnal warming treatment is
applied by using lightweight aluminum fabric shelters
mounted on rollers; as with a window shade, these are
drawn across the plots each night to reduce heat loss and
elevate nighttime air temperatures. The shelters roll up
again each morning. We plan to use the error detection
and data summary algorithms described above in this
experiment, to summarize nightly treatment effects and
generate statistical summaries of outlier values that we
can use to detect and quickly repair deployment failures.
Ultimately, we plan to use embedded processing to calcu-
late statistical differences among treatments and eventu-
ally to develop in situ algorithms to deploy the warming
apparatus and to automate the winter rainfall treatments.

� Outlook

Wireless sensor networks have tremendous potential in
environmental research. Ecologists are becoming increas-
ingly aware of the capability of these networks to collect
multiple point measures of ecological variables at high

Panel 1. In situ error detection in distributed sensor networks    

In any experiment, errors in sensor measure-
ment or data transmission occur occasionally.
In many cases erroneous readings fall within the
normal range of daily or seasonal variation and
may prove difficult to identify. However, these
rare error values may be large enough to affect
statistical inferences. Figure 4a shows a large,
rare data transmission error from a Sensor
Web pod at the Sevilleta LTER. It is possible to
embed algorithms in a pod’s processing unit
that compare data values among sensors, giving
a basis for error detection and for inferring
missing readings.As a consequence, outlier val-
ues can be detected and flagged when they
occur and, in the process, Sensor Web data are
analyzed and summarized “on-the-fly”.

To do this efficiently, and to accommodate
the fact that average values change throughout
the day and across seasons, we estimate the
probability distribution of differences between
a given quantity (eg air temperature) measured
at adjacent pods P(∆T; see Figure 4c).
Measurement errors are identified as point fail-
ures that occur with a small probability and typ-
ically correspond to large and sudden tempera-
ture differences of tens of degrees or more
between adjacent sensors.These can be identi-
fied and eliminated at a chosen level of confi-
dence, C, (eg 99%) by standard statistical tests.
By adjusting C, it is possible to fine tune the
level at which data values are considered to be
potential errors. Using inferred probability dis-
tributions from data, we determine the proba-
bility of observing a difference in measurements between the pod in question and its neighbors that is larger (in absolute value) than the
value observed. If this total probability is less than C the measurement is classified as anomalous; otherwise, the datum is accepted and
stored in the database. As new data values are accepted they can be used concurrently, to update the probability distribution of valid val-
ues. Missing readings at a sensor might also be inferred through knowledge of those of its neighboring pods and of the statistical distrib-
ution of their differences (Larkey et al. unpublished).
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temporal frequencies across vast spatial scales. The use of
inexpensive, long-lasting sensor networks will increase
our ability to conduct research at scales relevant to some
environmental grand challenges (NRC 2003). Yet envi-
ronmental sensor networks offer a far greater potential
than simply switching from a wired to a wireless world.
Wireless sensor networks can be programmed to assess
data quality, modify sampling regimes, and ultimately
activate ecological infrastructure. The optimal use of
such sensor networks will require a multi-disciplinary
effort, including ecologists, engineers, computer scien-
tists, and statisticians, to take full advantage of a technol-
ogy that is likely to revolutionize not only data collec-
tion, but also data processing, analysis, and manipulation
of experimental infrastructure. Because sensor network
technology is still maturing, the ecological community is
in a unique position to influence the growth of this tech-
nology by working across disciplines to infuse new ideas
into wireless sensor network development. 
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