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Quantitative Bioscience
for the 21st Century
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Using a carefully chosen set of examples, we illustrate the importance and ubiquity of quantitative reasoning in the biological sciences. The examples
range across many different levels of biological organization, from diseases through ecosystems, and the problems addressed range from basic to
applied. In addition to the overall theme that mathematical and statistical approaches are essential for understanding biological systems, three
particular and interacting mathematical themes emerge. First, nonlinearity is pervasive; second, inclusion of stochasticity is essential; and third,
issues of scale are common to all applications of quantitative approaches. Future progress in understanding many biological systems will depend on

continued applications and developments in these three areas, and on understanding how nonlinearity, stochasticity, and scale interact.
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B iologists are entering a new era in which they
require quantitative solutions to large-scale and complex
problems. Mathematical advances, particularly in analytical
and numerical modeling, statistics, and nonlinear systems
analysis, are crucial for finding useful solutions and developing
predictive tools for biology. Here we use examples to illustrate
why and how mathematical and quantitative approaches are
essential for making advances in scientists’ understanding
of biological processes. Although we touch on ideas spanning
the scope of biological research, we focus primarily on the en-
vironmental sciences, ecology, and evolution.

Throughout these examples, there are at least three com-
mon threads. First, mathematics has been well developed to
deal with nonlinear models that are deterministic, or with lin-
ear models that include stochasticity. Future advances will re-
quire the use and analysis of nonlinear stochastic models
(box 1), as illustrated by the studies reviewed by Bjernstad and
Grenfell (2001). In a variety of species, understanding dy-
namics is impossible with deterministic models alone. Fur-
thermore, because biological systems often seriously violate
the assumptions underlying simple methods for analyzing
mathematical systems, we still need to develop appropriate
working definitions of properties such as stability and re-
silience (Ives et al. 2003) to characterize observed populations,
communities, and ecosystems in ways that answer questions
biologists want to ask.

Second, it is imperative that scientists develop new meth-
ods, both statistical and mathematical, for understanding
how to deduce information from biological data sets, a topic
treated in more detail by Green and colleagues (2005). For ex-
ample, to advance fundamental understanding of principles
governing population dynamics, new approaches are needed
to obtain an acceptable quantitative fit of biological models

to data. Current methods for obtaining fit that include both
stochasticity in the underlying dynamics and errors in ob-
servation are still computationally and conceptually chal-
lenging (de Valpine 2003). How complex must a model be to
reproduce a given set of data? What data are required to val-
idate a given model? How can a model best be used to dis-
tinguish among competing explanations of biological
phenomena?

Third, much more work is needed to characterize variability
across scales of time and space. Can activities distributed
across large spatial and temporal scales be understood on the
basis of knowledge gained from brief, spatially restricted ex-
perimental observations? Ecological communities consist of
many interacting species, just as neuronal networks consist
of a “population” of interacting neurons. What is the appro-
priate way to simplify these systems, or, on the other hand,
what are the appropriate mathematical tools to understand
the full complexity of systems consisting of a large number
of strongly interacting cells, organisms, or species?
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Box 1. Nonlinear stochastic models.

Nonlinearity is a mathematical theme that runs through
examples of the application of mathematics to environ-
mental and ecological problems. Jensen’s inequality (see
Chesson [1985] for an example of its use) is a key con-
cept that allows understanding of the response of some
simple nonlinear stochastic models. As illustrated in fig-
ure 1, if the response of a key variable to the environ-
ment is either concave down (figure 1a) or concave up
(figure 1b), the role of variability, and increasing vari-
ability, is easy to understand. The simplicity of this result
arises because the nonlinearity enters in a simple way.
However, it is easy to see that such simple responses will
not be found if the response curve is more complex, if
there are several dependent variables that interact in a
complex way, or if explicit space is included. It is, how-
ever, just these kinds of interactions that are pervasive

in ecological systems, and therefore further efforts at
understanding the interaction between nonlinearity and
stochasticity are central to further progress in using
mathematics to understand ecological systems.

The large number of ways in which mathematics and sta-
tistics have been applied in biological studies makes it im-
possible to give a sensible, comprehensive survey. Therefore,
we have a more limited goal. Instead, we consider particular
examples of mathematical applications in the environmen-
tal sciences, illustrating the types of problems formulated
and solved with the aid of quantitative tools. We have chosen
examples in which there is both a history of success and the
prospect of new and exciting developments. As we go through
these examples, a number of themes emerge, thus giving
some generality to our review. In the following section, we will
explore some of these themes in more detail. Finally, we will
end with some speculations and suggestions for the general
research agenda linking mathematics, statistics, and envi-
ronmental sciences in the 21st century.

Examples of mathematical and quantitative reason-
ing in environmental biology

Here we give both a historical perspective and future prospects
for a number of examples illustrating the role of mathemat-
ical reasoning in environmental biology. We go through these
examples roughly in order of increasing level of biological or-
ganization, and thereby illustrate the ubiquity of mathemat-
ical reasoning at different biological scales.

Evolution of virulence. Diseases such as cholera emerge as sud-
den outbreaks, showing marked variation through space and
time both in their incidence—the number of individuals in-
fected in a population—and in their virulence-—the damage
a pathogen does to its victim in the course of completing its
life cycle. Epidemiologists have long studied how incidence
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Figure 1. Diagram of the effects of increasing variability
on average response when a system is either concave
down or concave up, an application of Jensen’s inequality.
The different lines illustrate the range of responses as the
variability increases around a mean value represented by
the black dot. Asvariability increases, the average re-
sponse can either (a) go down or (b) go up.

of viral, bacterial, and metazoan parasites can fluctuate in re-
sponse to changes in infectiousness and transmission, which
in turn are driven by social, economic, and medical trends.
More recently, they have begun to appreciate that virulence
is also dynamic, evolving rapidly in response to the same
factors that drive pathogen numbers.

The “classical dogma” of epidemiologists was that pathogens
always evolve in the direction of lower virulence, eventually
becoming harmless symbionts. Evolutionary models have
led epidemiologists to abandon this simple assumption, re-
placing it with a much richer view that incorporates the ef-
fects of within-host competition, trade-offs between
transmission and virulence, and coevolution between
pathogen offenses and host defenses. A strong implication of
the trade-off theory, which focuses on the pathogen’s trade-
off between maximizing its replication and preserving its
host’s viability, is that public health experts can manage the
virulence as well as the incidence of disease by taking actions
that lower transmission rates (Dieckmann et al. 2002). Sim-
ple mathematical models have been essential in formulating
and understanding the conclusions of the trade-off theory
(Ewald 1995, Gandon et al. 2001).

The trade-off theory focuses on one particular aspect of
host—pathogen coevolution, and it takes a simple phenome-



nological view of the trade-offs constraining pathogen life his-
tories. More sophisticated mathematical analyses have explored
the balance between the effects of selection within and between
hosts (Frank 1996), the effects of spatial structure (Boots
and Sasaki 1999), and the connection between population dy-
namics and evolution (Lenski and May 1994). Much work re-
mains to be done in formulating and developing these more
complex mathematical models, and in finding ways of ana-
lyzing them. In particular, spatial disease-evolution models
have connections to all of the mathematical challenges (non-
linear, stochastic models with spatial or network structure)
that are identified elsewhere in this article.

As recent challenges to the trade-off theory have pointed
out, existing models may still be too simple and too focused
on the phenomenon of parasite trade-offs to come to grips
with the reality of virulence evolution. Quantitative biologists
must come to grips with a complex, stochastic, poorly observed
system; to do so, they will need new analytical tools that in-
corporate some realistic details and allow for formal match-
ing with data, but still preserve researchers’ ability to
understand (and therefore generalize) the underlying dy-
namics of the system. Empiricists in this field have prospected
for qualitative virulence factors in the genomes of pathogens,
an approach that poorly matches the quantitative frame-
work of most interest to theoreticians (Reid et al. 2000). The-
oreticians must work to build models of qualitative genetics,
and empiricists must work to establish the mechanistic ba-
sis for continuous variation in virulence (Mackinnon and Read
1999a, 1999b). A similar gulf exists between theoreticians
and immunologists, with theoreticians wanting to condense
immune states down to a single oversimplified axis of im-
munocompetence, and immunologists insisting that every cell
subtype has a unique role that must be reflected in a realis-
tic model (Segel 2001). How do we make our models, in
Einstein’s words, “as simple as possible, but no simpler”?

Community ecology of disease. Ebola, hantavirus, bubonic
plague, Lyme disease, West Nile virus, rinderpest, and ca-
nine distemper virus are all examples of diseases that affect
focal host populations through repeated transmission across
species boundaries (Osterhaus 2000, Schmid and Ostfeld
2001, Yates et al. 2002). To understand, predict, and control
these diseases, we must understand the ecology of the reser-
voir host communities that maintain and amplify disease, and
the ecology of contacts between these reservoir communities
and the focal, or receiving, species. Empirical work is neces-
sary to establish the basic facts of individual-level infection
and immunity, as well as the patterns of animal behavior
and movement that influence disease spread. Quantitative the-
oretical models play an essential role in guiding data collec-
tion, in estimating transmission rates within and between
species (which is almost impossible without a modeling
framework), and in understanding the observed patterns of
disease. Furthermore, models can be used to assess ways to
control disease outbreaks, such as vaccinating, culling, or
treating particular reservoir species.

Articles

The Serengeti ecosystem, one of the most spectacular bi-
ological communities in the world, was devastated when
rinderpest was introduced from central Asia in the late 19th
century and spread among domesticated and wild ungulate
populations. The cascading effects of lowered ungulate pop-
ulation sizes permanently changed the vegetation structure
of East Africa, and may have made conditions more suitable
for the invasion of tsetse flies (vectors of sleeping sickness),
further modifying the biological and human communities of
the region. Although these historical effects are still not com-
pletely worked out, it is clear that rinderpest, like the related
measles virus, is subject to extreme “boom and bust” dy-
namics and could not maintain itself within the diverse com-
munity of wild ungulates in the Serengeti. Instead, rinderpest
was maintained by stable populations of domestic cattle sur-
rounding the wild herds. With the development and suc-
cessful deployment of rinderpest vaccine in domestic cattle,
the rinderpest epidemic has been brought under control,
and wild ungulate herds have increased to near-historic lev-
els, although some community-level effects of disease may be
permanent.

While many diseases have complex dynamics, they also de-
pend on the dynamics of a community of animals, and the
latter dynamics are just as complex, if not so well worked out.
Ebola spreads among apes as well as humans and is main-
tained by an as yet unknown animal reservoir; Lyme disease
and bubonic plague appear to persist in rodent populations
by jumping sporadically among subpopulations (Keeling
and Gilligan 2000). In many ways researchers are limited by
the difficulty of gathering data on disease in wildlife popu-
lations, but another limiting factor is our ability to make
sense of the data we do have. We must develop modeling
frameworks for multispecies epidemics, possibly by extend-
ing existing models that include host subtypes to handle
multiple species. We must find better ways of analyzing non-
linear multispecies models beyond the existing techniques of
(a) linearizing many-species models (Koopman et al. 1989)
or (b) doing exhaustive nonlinear analyses of models with no
more than three species (Begon et al. 1992). We must adapt
methods for estimating transmission rates within species
(Bjornstad et al. 2002) to the much more difficult multi-
species case. The biggest challenge in this area, however, is how
to use the sparse data we do have. We need techniques to lever-
age existing data, for example, by using allometric scaling mod-
els to constrain the demographic and life-history parameters
of different species (De Leo and Dobson 1996), or by using
Bayesian methods to include information from other systems,
and combine all of these data in a way that accounts for our
uncertainties. Only with these tools in hand can we know how
effective vaccination, culling, and treatment will be, and
where and when to apply them.

Management of renewable resources. As the human popu-
lation has increased, human impacts on resources such as fish-
eries and forests have continued to grow. Recent developments,
including the closure of the groundfish fishery off the West
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Coast of the United States and the closure of parts of the Grand
Banks off the northeastern United States to certain kinds of
fishing, are indicative of the kinds of difficulties that are likely
to increase in the future. Although the ideas outlined below
apply to many renewable resources, we highlight several
problems concerning fisheries for illustrative purposes.

There are basic and well-developed applications of math-
ematical and quantitative approaches to the management of
fisheries. In management, it is important to understand both
the biology and the economics of the system (Clark 1990). Fur-
ther, resource management is a field in which attention to spe-
cific assumptions is essential, and the goal is quantitative
prediction of how a system might change under different
management strategies. For example, the most basic con-
cept in resource management is that of maximum sustainable
yield, the largest harvest rate on a population that can be sus-
tained indefinitely. The maximum sustainable yield can be cal-
culated from simple models of population dynamics using
elementary calculus. Although this concept is useful in ex-
ploring the possibility and consequences of overfishing, its
shortcomings highlight the dangers of simple attempts to
manage resources. Essentially, these simple models do not in-
corporate the important roles that economics and stochasticity
play in the dynamics of a managed resource, both of which
can greatly change outcomes (Clark 1990). Approaches that
use only maximum sustainable yield ignore the cost of fish-
ing, the possible alternative uses of the capital used for fish-
ing, and even the possibility of thinking of the fish stock
itself as an investment that could potentially be liquidated and
its resources invested elsewhere. Clark (1990) explains how
these ideas have played an essential role in management of
whale fisheries.

Although maximum sustainable yield is an old concept in
fisheries management, it is currently being applied in new con-
texts. For example, maximum sustainable yields are being used
to assess mathematically the conservation advantages of dif-
ferent marine reserve designs, in which fishing is prohibited
(Hastings and Botsford 1999, Botsford et al. 2001). Here,
too, approaches that explicitly take into account more eco-
nomic issues are likely to prove fruitful.

A more realistic understanding of the spatial management
of renewable resources (Sanchirico and Wilen 2001) requires
an integration of economic and biological approaches in a spa-
tial context, an inclusion of temporal variability, and an ex-
amination of a large number of kinds of fisheries that have
not been covered by the current models. Moreover, because
targeted species within fisheries typically have dispersal phases
in which there are complex interactions between biology
and the physical movement of water (which represents a
substantial mathematical and computational challenge on its
own), there is much room for improved understanding of the
recruitment phase of the life cycle of many managed species.
Predictions will, of course, depend on good estimates of cur-
rent biological conditions and population sizes, so further de-
velopment of statistical approaches is essential.
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Large-scale and global ecology. Many of today’s most press-
ing problems are regional or global in nature, including, for
example, the effects of land cover and land use on endangered
species, the consequences of carbon flow in ocean and at-
mospheric systems for climate change, the effects of climate
change on species distributions, and the protection of ecosys-
tems from human threats. Solving these problems is not triv-
ial, in part because the vast majority of empirical work has
been done at fairly small scales, both temporal and spatial. In-
deed, it is often impractical or impossible to investigate these
problems at regional scales (Miller et al. 2004). A further
difficulty is that ecosystems are composed of many interact-
ing parts that can exhibit very complex behaviors and may be
sensitive to initial conditions and context.

Mathematical and statistical tools are central to enhancing
scientists’ understanding of large-scale systems and include,
for example, cybernetics, control theory, information theory,
network theory, thermodynamics, self-organization theory,
emergence and hierarchy theory, and power laws (Miiller
1992, 1997). A compelling example of the application of
mathematical theory to important global-scale ecological
problems comes from the work of Allen and colleagues
(2002). Historically, one of the most prominent but least un-
derstood patterns in nature is the well-known latitudinal
gradient in biodiversity from poles to the equator. All major
groups of terrestrial, freshwater, and marine taxa display lat-
itudinal gradients in biodiversity, yet the principles underly-
ing the origin and maintenance of these patterns have been
elusive. Allen and colleagues (2002) used a theoretical model
that quantitatively predicted species diversity from the bio-
chemical kinetics of metabolism. Since temperature varies with
latitude, a kinetic model can explain the latitudinal gradients
that have highest diversity near the tropics. These results es-
tablished a thermodynamic basis for the regulation of species
diversity and the organization of ecological communities.

There are many challenges that remain for making large-
scale ecology a more predictive and quantitative science (Pace
and Groffman 1998). To be predictive, theory must be used
to extrapolate from the growing amount of data being col-
lected in an increasing number of monitoring programs.
The sheer amount of data represents a major challenge, as re-
searchers need efficient computational algorithms to store, an-
alyze, and visualize data, often in different formats and at
different resolutions (e.g., pixelated satellite images versus
surface-water flow rates through monitoring stations). Beyond
this, we need informatics techniques to integrate, synthesize,
and mine data to address specific problems using data collected
from a broad range of institutions for a broad range of pur-
poses. Many problems arise, such as how to combine quali-
tative and quantitative information, and how to link multiple
types of statistical and mathematical models that operate at
different spatial and temporal scales (Benda et al. 2002, Bur-
rows et al. 2002).

Scaling from individuals to ecosystems. Models that describe

how individual organisms acquire energy and materials, and



how they use them for survival, growth, and reproduction,
have the potential to link ecological processes at various lev-
els (Kooijman 2000). Dynamic physiological models that
describe the flows of energy and elemental matter through in-
dividuals, and models that determine how these flows scale
up to higher organizational levels, have several different ap-
plications. These models can contribute to life-history theory,
impose constraints on the dynamics of populations, and
form the foundation for analytically and computationally
tractable models of ecosystems (Brown et al. 2004).

Biological oceanographers have long used physiologically
based models such as the Droop model, which predicts max-
imum growth rate on the basis of the internal nutrient con-
centration within individual plankton cells, to scale
biogeochemical dynamics up from the functioning of single
foraging plankton to the biogeochemical balances of entire
ocean cells; these are then embedded in three-trophic-level
(nutrient—phytoplankton—zooplankton, or NPZ) models and
incorporated into large-scale computational mixing models
to determine the temporal and spatial patterns of global bio-
geochemical fluxes. Although debate over the appropriate
level of model complexity continues (plankton dynamics
are complicated by biochemical variation among different
plankton guilds and by successional changes in size distrib-
ution), the simpler models are routinely embedded in large-
scale climate models to predict the effects of plankton growth
on atmosphere—ocean carbon balances, and have recently
been adapted to study phytoplankton blooms (Sommer 1991,
Hurtt and Armstrong 1999, Huppert et al. 2002).

Scaling of biogeochemical fluxes in terrestrial systems has
proved much harder. Although ecosystem ecologists often scale
“from leaf to globe™ in one or two steps (Ehleringer and
Field 1993, Fitz et al. 1996), population and community ecol-
ogists have insisted that variability within and among pop-
ulations and species must be incorporated in this scaling
process. Such scaling is biologically and mathematically non-
trivial. Even when scaling from leaves to individual trees,
functional ecologists have found it difficult to develop gen-
eral models that can predict plant responses to increases in
carbon dioxide and temperature (Bernacchi et al. 2000). The
problem gets even harder when plants balance their needs for
multiple nutrients; interact with other plants, soil microbes,
or herbivores; respond to their environment by acclimating
(showing phenotypic plasticity); or respond by changing
their development (showing ontogenetic shifts). Scientists and
managers need the data, and the models to interpret the
data, to understand the effects of spatially dispersed envi-
ronmental disturbances (Moorcroft et al. 2001), successional
and climate-driven shifts of species composition within a
given habitat, and movement of species range limits when cli-
mates change rapidly (Pitelka et al. 1997).

The mathematical, statistical, and computational chal-
lenges here are formidable. Scientists must come up with
ways of reliably constraining large models with continental-
scale databases, and of estimating the future behavior of
species assemblages in a changing climate. More fundamen-
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tally, we need to find models and methods of solution that are
quick enough to be coupled with global-scale simulation
models, through some combination of computational ad-
vances (algorithmic and parallel-computation techniques) and
mathematical advances that aggregate the details of models
while retaining quantitative accuracy in physical and bio-
geochemical properties at a larger scale.

The critical biological question is whether the signature of
individual interactions with the abiotic environment is reli-
ably transmitted up multiple levels of organizational scale, or
whether the frequency-dependent and idiosyncratic nature
of community interactions blurs these regularities at the
ecosystem scale. With sufficient attention to the mathemat-
ical rules of scaling, and to the regularities observed in the way
that broad classes of organisms have solved their ecological
problems (Reich et al. 1997), we should be able to develop a
new class of tools that increase our power to understand and
predict biological dynamics across a range of scales.

Conclusions

If the examples described above were not connected by com-
mon quantitative and mathematical approaches, prospects for
the future would be much bleaker. Biological questions have
historically opened up new areas in mathematics and statis-
tics, which in turn have proved useful in other areas of biol-
ogy. For example, in addition to his invention of a new field
of statistics (analysis of variance) for interpreting the results
of biological experiments, Sir Ronald Fisher opened up new
areas of mathematical analysis through his interest in the
traveling waves of invasion of novel genes. Thus, the common
themes that run through challenges in quantitative biology
should foster new quantitative approaches that will have im-
pacts across a range of biological issues. Here we discuss
three themes: spatial and temporal variability, statistical in-
tegration of theory and data, and the problem of scaling.

The ubiquity of variability in biological systems has always
been known, and yet methods for dealing with stochastic
systems are only now reaching a form in which they can eas-
ily be applied to models of biological systems, and further de-
velopment is urgently needed. Stochasticity is present at all
levels in environmental biology, ranging from genetic muta-
tions through individual behaviors, movement of individu-
als, demographic rates (survival and reproduction), population
sizes, resource availability, community composition, rates of
nutrient fluxes, and the multitude of environmental drivers
that affect biological processes. Identifying the underlying
processes that affect biological systems requires an explicit ac-
counting of the stochastic nature of the system dynamics. This
accounting is also needed to forecast changes in biological sys-
tems.

Stochasticity can occur either in space or in time, but in ei-
ther case it can have large, direct impacts on ecological and
evolutionary processes. For example, stochasticity in space,
or spatial heterogeneity, can help to explain why there is so
much biodiversity on the planet. What allows the estimated
10 million species of higher organisms to coexist on Earth?
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Simple laboratory experiments demonstrate how hard it is for
similar species to coexist (Lotka 1925, MacArthur and Levins
1967), thus suggesting that the variability of natural systems
is responsible for the coexistence of similar species. Recent the-
oretical advances have shown how spatial and temporal sto-
chasticity can lead to coexistence of competing species that
in the absence of stochasticity would not coexist (Chesson
1985, Ives and May 1985). This occurs because competition
is inherently a nonlinear process: when averaging variable pop-
ulation growth rates that are nonlinear in space or time, the
consequence of stochasticity may be to favor, on average, the
rare species, thus facilitating the coexistence of many species
in an ecosystem.

A second theme running throughout quantitative biol-
ogy is that theory needs to be challenged directly with data.
This requires statistically fitting models to data, and then us-
ing the models to address specific theoretical hypotheses. By
building multiple models around different hypotheses and sta-
tistically competing the models against each other, statistical
inferences can be made about the strength and likelihood of
different hypotheses. Furthermore, if models are used to
make predictions, rigorous statistical approaches provide not
only predictions but also estimates of the confidence that
can be placed in the predictions. While statistical confidence
is well known and well studied in simple statistical models,
obtaining statistical confidence for the predictions from the
complex, nonlinear models needed for many biological prob-
lems is not simple.

This second theme of challenging theory with data goes
hand in hand with the first theme of modeling spatial and tem-
poral variability. In a statistical model for biological systems,
accounting generally has to be made for process variability (the
“true” stochasticity of the biological processes, which essen-
tially represents all those factors not included in a model) and
observation variability (uncertainty introduced by researchers’
inability to observe the “true” system perfectly). To address our
first theme (integrating theory with data), the challenge is to
produce models that elucidate the effects of process vari-
ability on the properties of a biological system. To address the
second theme (challenging theory with data), the challenge
is to couple this understanding of dynamics with an appro-
priate description of our limited knowledge of real systems,
to produce a statistical model with both process and obser-
vation variability. Thus, the second theme has many of the
same issues as the first, but is complicated by the need to model
how well we can or cannot observe biological systems.

The third theme that is common throughout quantitative
biology is the problem of scaling. Questions of scale include
the appropriate spatial and temporal resolution needed to ad-
dress a problem. For example, most ecological systems ex-
perience temporal variability in the environment, operating
as daily, yearly, and decadal cycles. If ecological systems were
purely linear, then the consequences of cyclic fluctuations at
these different frequencies would be easy to separate. How-
ever, ecological systems are not linear, and therefore the con-
sequences of these different temporal scales and their
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interactions are complex. This complexity, which is further
complicated by stochasticity, may itself play out differently at
different scales. For example, predictions over very short or
very long time scales may be easier than predictions over the
intermediate time scales that may be of the greatest biologi-
cal interest. Similar complexities arise in scaling up processes
spatially, when interactions at local scales (between individ-
ual trees, for example) do not extrapolate easily to patterns
observed at regional scales (the species composition of forests).

The issue of scale in quantitative biology involves not just
the appropriate spatial and temporal resolution but also the
level of detail needed to describe and predict biological
processes. Thus, issues of stochasticity present further diffi-
culties in choosing an appropriate scale. For example, for an
applied problem such as the design of marine reserves, is it
most appropriate to lump fish species into generic categories
(planktivores, piscivores, top predators), to treat each species
separately, or to treat each individual fish separately? The
answer to this question depends in part on how the ecolog-
ical system works. For example, are species of planktivores sim-
ilar enough that they can be lumped, or are there differences
that affect optimal reserve designs? This depends on nonlin-
earities in the dynamics of individual species, and on how these
nonlinearities interact with stochastic forces that affect the sys-
tem. But it also depends on what data are available. If data are
not available for separate species of planktivores, then it
might make no sense to build a model with separate species.
Thus, the third theme of scale ties directly to the two other
themes of quantitative biology: (1) the effects of variability in
nonlinear systems and (2) the statistical fitting of theoretical
models with data.

Across all of these themes, one goal rises as paramount. No
model gives a true depiction of a biological system; a model
is by definition an approximation, a caricature of reality (e.g.,
Lotka—Volterra competition models). This is obviously true
of intentionally simple models that are designed to give crude
but general understanding of biological processes. It is less ob-
viously but no less true for complex, highly parameterized
models tailored for specific biological systems (e.g., CENTURY;
Parton et al. 1995). Thus, quantitative biology is inherently lim-
ited to inferences made from approximations to real sys-
tems. Acknowledging this limitation, the main goal of
quantitative biology should be to derive not just predictive
models of specific systems but also simple generalities and rules
of thumb that transcend the details of the mathematics. Ul-
timately, mathematical models must benefit biologists by
clarifying the problems they address, and the yardstick of
mathematical modeling in biology must be the insight it
gives into biological systems, rather than the elegance of
mathematical solutions.
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