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A B S T R A C T   

Woody species encroachment of grasslands globally causes many socioecological impacts, including loss of 
grazing pastures and decreased biodiversity. Soil microbial communities may partially regulate the pace of shrub 
encroachment, as plant-microbial interactions can strongly influence plant success. We measured fungal 
composition and activity under dominant plant species across a grassland to shrubland transition to determine if 
shrubs cultivate soil microbial communities as they invade. Specifically, soil microbial communities, abiotic soil 
properties, and extracellular enzyme activities were quantified for soils under four common Chihuahuan Desert 
plant species (three grasses, one shrub) in central New Mexico, U.S.A. Extracellular enzyme activity levels were 
fairly consistent under different plant species across the grassland to shrubland transition. Activity levels of two 
enzymes (alkaline phosphatase and beta-N-acetyl-glucosaminidase) were lower in the ecotone, presumably 
because soil organic matter content was also lower in ecotone soils. Community composition of soil fungi 
mirrored patterns in the plant community, with distinct plant and fungal communities in the shrubland and 
grassland, while grassland-shrubland ecotone soils hosted a mix of taxa from both habitats. We show that shrubs 
cultivate a distinct microbial community on the leading edge of the invasion, which may be necessary for shrub 
colonization, establishment, and persistence.   

1. Introduction 

In the Anthropocene, species distributions are shifting in response to 
global changes (Kelly and Goulden 2008; Chen et al., 2011; Virkkala and 
Lehikoinen 2014; Ash et al., 2017). Understanding the causes of range 
shifts will help to predict the distribution of species and communities 
into the future. Many factors interact to shape the magnitude and rate at 
which species ranges expand and/or contract (van der Putten et al., 
2010; Engelkes et al., 2018), but the numerous regulating processes 
involved are poorly understood. Soil microbial communities and 
plant-soil feedbacks are important factors that could regulate the speed 
and success of plant migrations (Bever et al., 1997; Levine et al., 2006; 
Reinhart and Callaway 2006; Bardgett and van der Putten 2014; Dawson 
and Schrama 2016), yet these feedbacks have received limited attention 
within the context of woody plant encroachment. 

Plant-associated microbes are essential to nearly all plant 

communities, regulating nutrient cycling (Collins et al., 2008; Bardgett 
and van der Putten 2014), influencing pollinators (Vannette and Fukami 
2016), interacting with other trophic levels (Finkes et al., 2006), and 
shaping plant productivity and diversity (van der Heijden et al., 2008). 
In particular, the critical role of microbes in decomposition and nutrient 
cycling has long been of interest (Lindeman 1942). Within the soil, 
microbes exude enzymes to breakdown complex molecules prior to 
absorption, and many of the products of extracellular enzyme activity 
are also available for uptake by plants. Quantifying extracellular enzyme 
activity levels provides a measurement of both microbial activity and 
resource availability within the soil (Sinsabaugh 1994). 

With the advent of more accessible and advanced sequencing tech
niques, we can also now characterize the diversity and composition of 
microbial communities to better understand their dynamics and com
plex associations with plants. As with plant communities, microbial 
community composition and function vary within a landscape (Johnson 
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et al., 2018), through time (Williams et al., 2013; Kyaschonko et al., 
2017), as well as across climatic and ecological gradients (Taylor et al., 
2014; Mueller et al., 2016; Mureva and Ward 2017; Tripathi et al., 
2017). This spatial and temporal variation in microbial composition will 
likely continue to influence future plant persistence. 

Given the importance of plant-soil feedbacks in plant productivity, 
persistence, and diversity (Bardgett and van der Putten 2014; Bauer 
et al., 2017), it is likely that soil microbial communities may influence 
both plant distributions and the rate of plant invasions (Perkins and 
Nowak 2013; Bardgett and van der Putten 2014; Dickie et al., 2017; 
Policelli et al., 2019). While plants are dependent on microbes, 
plant-microbe interactions fall along a spectrum from beneficial to 
antagonistic. As antagonistic relationships between microbes and resi
dent plants develop through time, soils can become more favorable to 
new plant species than to established species. These more favorable soil 
conditions can aid in expanding plant ranges, particularly if other 
necessary soil microbes are also present at the new location (van 
Grunsven et al., 2010; van der Putten et al., 2016, but see Suding et al., 
2013). Alternatively, necessary microbes might not be present at new 
locations and plant-associated microbial communities may need to 
migrate with the plants, thus potentially limiting the rate at which plant 
expansions occur. In the latter case, it is unclear if the plants or microbes 
are the first to move, or if they move together as abiotic conditions 
change (Zorbel and Öpik 2014). 

Shrub expansion into neighboring grasslands and open areas is a 
global phenomenon with widespread ecological and societal conse
quences (Tape et al., 2006; Briggs et al., 2007; Van Auken 2009; Eldridge 
et al., 2011; Ratajczak et al., 2012; Quero et al., 2013; Archer et al., 
2017) including reduced forage production, altered biodiversity, 
increased soil erosion, and increased carbon sequestration (Archer et al., 
2017). Oftentimes the encroaching shrub is a native or naturalized 
species that has recently expanded into adjacent habitats (Van Auken 
2000; Heisler et al., 2003; Briggs et al., 2005; Fredrickson et al., 2006), 
and local soil microbial communities may influence the rate of woody 
plant expansion. In desert shrublands, microbial biomass is higher under 
shrubs relative to open areas between shrubs (Bacher et al., 2012; 
Creamer et al., 2016; Li et al., 2017; Mureva and Ward 2017), and in 
general soil microbial communities change as shrubs invade (Xiang 
et al., 2018). Encroaching shrubs can directly alter soil microbial com
munities (Collins et al., 2016) or indirectly shape soil microbes through 
changes to soil properties and chemistry (Creamer et al., 2016). Addi
tional studies regarding soil microbial composition associated with 
shrub encroachment will allow us to look for generalities in the influ
ence of microbes on the process of shrub encroachment. 

We surveyed soil characteristics, microbial communities, and mi
crobial activities under dominant plant species in grassland, shrubland, 
and the grassland-shrubland ecotone in a region where range expansion 
of a dominant shrub is actively occurring to ask: (1) To what degree is 
the soil environment (e.g. fungal composition and activity) under shrubs 
distinct from that of the grasslands they encroach? If the soil biotic 
environments are similar, then plant-soil feedbacks may not influence 
the rate of shrub encroachment. (2) If soil biotic environments differ 
between grasslands and shrublands, do invading shrubs in the ecotone 
alter soil microbial communities to reflect the composition and function 
of shrubland soils, or instead do invading shrubs adapt to the grassland 
soil microbial community? To assess microbial community function and 
composition associated with shrub encroachment, we measured micro
bial activity levels via extracellular enzyme assays and fungal species 
composition via DNA amplicon sequencing for soils under dominant 
plants across the grassland to shrubland transition. 

2. Materials and methods 

2.1. Study species and research site 

This research was conducted at the Sevilleta National Wildlife 

Refuge (SNWR), also the site of the Sevilleta Long Term Ecological 
Research (LTER) program, located in central New Mexico, U.S.A. 
(34.33◦ N, 106.83◦ W). Average daily maximum temperatures range 
from 33.4 ◦C in June to 1.6 ◦C in January (Muldavin et al., 2008), and 
the site receives on average of 240 mm of rainfall annually, with 60% 
falling in summer monsoon events from June to September (Gosz et al., 
1995; Pennington and Collins 2007; Petrie et al., 2014). Soils are a Typic 
Haplargid, with a 3.0–7.5 cm deep sandy surface soil composed of 
Aeolian material atop several argillic horizons (Buxbaum and Vanderbilt 
2007; Bryan-Ricketts 2012). The SNWR includes both Chihuahuan 
Desert grasslands that are dominated by several grasses (e.g., Bouteloua 
spp., Pleuraphis spp., Aristida spp.) and Chihuahuan Desert shrublands 
dominated by Larrea tridentata. 

Larrea tridentata (creosote bush) is a drought tolerant C3 evergreen 
shrub native to the warm deserts of North America (Laport et al., 2012; 
Báez et al., 2013). Here in the northern Chihuahuan Desert, individuals 
are not clonal and reproduce only by seed (Duran et al., 2005). Although 
L. tridentata has very specific requirements for germination and estab
lishment success (Ackerman 1979; Reynolds et al., 1999; Moreno-de la 
Heras et al., 2016), once established L. tridentata is extremely hardy and 
persistent (Bowers et al., 1995; Gibson et al., 2004; Ladwig et al., 2019), 
with some individuals estimated to be > 10,000 years old (Vasek 1980). 
Regionally, notable population expansions into neighboring grasslands 
have occurred since the 1850s (McCraw 1985; Gibbens et al., 2005), 
changing the community composition and function of these desert 
ecosystems (Pockman and Small 2010; Turnbull et al., 2011). Our site is 
located at the northern range extent of L. tridentata where its distribution 
is thought to be limited by cold temperatures (Pockman and Sperry 
1997). Therefore, warmer and dryer conditions associated with climate 
change in this region (Rudgers et al., 2018) may aid in the continued 
expansion of L. tridentata. 

The three grass species included in this study, Bouteloua eriopoda, 
Bouteloua gracilis, and Pleuraphis jamesii, are long-lived (>30 years), 
perennial C4 grasses that are common throughout the region. All three 
grasses spread asexually. Bouteloua gracilis is caespitose and forms 
slowly expanding rings in our region (Ravi et al., 2008; Hoffman et al., 
2020), whereas B. eriopoda and P. jamesii expand more rapidly by stolons 
and rhizomes, respectively (Peters and Yao 2012; Hoover et al., 2017). 
Collectively they contribute >80% of total grass biomass within grass
lands at the SNWR (Rudgers et al., 2019). Currently, the Chihuahuan 
Desert grass B. eriopoda is increasing in areas dominated by the Great 
Plains species, B. gracilis, likely as a consequence of long-term regional 
increases in aridity (Rudgers et al., 2018; Maurer et al., 2020; Collins 
et al., 2020). 

2.2. Field and lab procedures 

To examine if microbial communities change across the grassland to 
shrubland transition, we measured fungal community composition, 
enzyme activity levels, and abiotic properties of soils beneath dominant 
plant species in grassland, shrubland, and the ecotone between these 
systems (referred to as “ecotone” hereafter). Soils were collected on 
October 20, 2013 under L. tridentata and the three grass species along a 
400 m continuous belt transect through the three habitats (shrubland, 
ecotone, grassland; Fig. 1). No species were present in all three systems; 
rather, species occurrence varied among shrubland (L. tridentata), 
ecotone (L. tridentata, B. eriopoda, P. jamesii) and grassland (B. gracilis, B. 
eriopoda, P. jamesii; Fig. 1). At locations where multiple plant species co- 
occurred (e.g., in grasslands and ecotones), replicate plants of each 
species were located within 1 m of each other to control for soil and 
microclimate conditions. Within each system, soil samples were 
collected from below 8 individuals of each focal species and were pro
cessed separately for a total of 56 samples (8 in shrubland, 24 in 
grassland, 24 in ecotone; Fig. 1). Under each plant, three separate soil 
samples were collected to measure soil texture/nutrients, microbial 
community composition via DNA sequencing, and extracellular enzyme 
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activity. 
To assess abiotic soil conditions, soil texture and nutrient content 

were measured. For soil collection, at least 100 g of the top 10 cm of soil 
were collected with a hand trowel and allowed to air dry in the lab. Once 
dry, samples were split in half for nutrient and texture analysis. For 
nutrient analysis, samples were processed at the University of Wisconsin 
Soil and Forage Analysis Lab (www.uwlab.soils.wisc.edu), and analysis 
included concentrations (ppm) of K, P (method: 1:1 water, Bray 1, Bray 
1, LOI) and NO3 (method: potassium chloride), in addition to percent 
organic matter (OM; loss on ignition). For texture analysis, fractions of 
sand, silt, and clay were measured via settling rates and a hydrometer. 

Soil microbial community composition was measured by sequencing 
fungal DNA. For soil collection, a sterilized 15 mL plastic tube (1.5 cm 
diameter) was pushed into the soil at the base of the plant to a depth of 
10 cm, placed in liquid N in the field, and stored at − 80 ◦C. Samples 
were thawed on ice and roots and large stones were removed from the 
sample with forceps. DNA was extracted from 10 g of soil using a 
PowerMax Soil DNA Isolation Kit (Mo Bio Laboratories, Inc.). Extracted 
DNA was quantified using PicoGreen fluorometeric quantification 
(ThermoFisher) and was sent to processing facilities at the Environ
mental Genetics & Genomics (EnGGen) lab at Northern Arizona Uni
versity (www.enggen.nau.edu) for Illumina Miseq V3 paired end 
sequencing of the fungal ITS2 region using the 5.8S-Fun/ITS4-Fun 
primer set (Taylor et al., 2016). Due to the poor quality of the reverse 
reads, only the forward reads were used. All sequencing processing was 
conducted in USEARCHv11 (Edgar 2010). The forward reads were 
demultiplexed using fastx_demux, resulting in 5,330,416 reads. Residual 
phiX reads were removed using filter_phix, and the primer sequences 
were removed. Reads were then quality filtered, removing any reads 
with expected error rate higher than 1, filtered to only unique se
quences, chimera checked, clustered into operational taxonomic units 
(OTUs) at 97% similarity, and finally mapped back to the demultiplexed 
reads using the default settings in USEARCHv11 (Edgar 2013, 2016). 
Sequences were submitted to NCBI under BioProject PRJNA734481. 

Representative fungal sequences were classified using both sintax in 
USEARCHv10 (UNITEv7.2) and Protax (Abarenkov et al., 2018; against 
UNITEv8). Classifications from sintax and Protax were mostly 

congruent, but those from Protax were sometimes more resolved, and so 
were used as the default classifications for downstream analysis. OTUs 
classified to fungi with less than 80% confidence according to sintax 
were filtered from the matrix resulting in 3,949,775 reads and 3762 
OTUs. We used Kracken (Wood and Salzberg 2014) implemented on the 
public server at usegalaxy.org (Afgan et al., 2016) to identify OTUs that 
classified to bacterial species (top hits) then filtered them from the 
matrix. 

A number of OTUs were poorly identified by both sintax and Protax, 
which hampered functional analyses. For example, using sintax 599 out 
of 2674 OTUs (22.4%) could not be identified to phylum and an addi
tional 432 OTUs (16.2%) could not be identified to class. Results ob
tained from Protax with no confidence threshold were slightly better 
(1.9% of OTUs identified to Kingdom only and another 19.0% to Phylum 
only). We therefore undertook several additional steps to better identify 
the top 500 most abundant OTUs, which together accounted for 89.7% 
of the 2,321,517 reads. First, we identified the best matches in NCBI 
using discontiguous megablast (Johnson et al., 2008) with uncultur
ed/environmental sequences excluded, no masking of low complexity 
regions, and 16 nucleotide template length with two templates for the 
discontinuous options. If a top hit was found that satisfied the following 
criteria, the manual classification was considered complete: well iden
tified (species-level preferred, genus-level accepted if no relatively close 
species-level matches); >97% identity and 90% coverage; taxonomic 
consistency with other top hits and with any sequences from type 
specimens. In cases where none of the top blast matches met these 
criteria, we then used the “compute distance tree” option in blast to 
compare the 100 top hits with the query OTU. If our OTU fell within a 
clade surrounded by sequences from a single species, it was assigned to 
that species; if it fell within a clade comprised of different species from a 
single genus, it was assigned to that genus, and so on. In general, this 
corresponds to a ‘least common ancestor’ (LCA) approach as imple
mented in programs such as MEGAN (Huson et al., 2007). In some cases, 
outlier NCBI sequences that were assigned to a different class or order 
from the majority of the hits were ignored, as these would unnecessarily 
broaden the LCA assignment. 

Ten OTUs were poorly identified even after the above steps were 

Fig. 1. Sampling locations across the 400 m transect from shrubland to grassland. Soil samples were collected under four dominant plant species, indicated by 
different colors, and three habitats (shrubland, ecotone, grassland). Aerial image is from Google Earth and habitat photos were taken by L.M. Ladwig. 
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undertaken. For these 10 OTUs, we performed full phylogenetic analyses 
as follows. We conducted another discontinuous megablast search, but 
with uncultured sequences included, with the goal of identifying closely 
matching sequences that were significantly longer than our 150bp reads. 
These longer sequences were then used in a second round of blast 
searches using the top, longer NCBI match as the query, once again 
excluding uncultured sequences in order to identify addition related 
GenBank entries with greater phylogenetic signal due to greater length. 
All well identified matches were downloaded, aligned to the NCBI query 
and our OTU representative sequence using MAFFT in Aliview (Larsson 
2014), then subjected to maximum likelihood tree construction in Garli 
0.96 (Zwickl 2006) using default parameters. The position of our OTUs 
within these trees were interpreted similarly to the blast distance trees to 
estimate OTU taxonomic placements. During these steps, we removed 
any OTUs that did not match fungi along with the common contaminant 
Malassezia sp. Post filtering and removal of non-target samples, the 
fungal community was composed of 2,321,517 reads and 2674 OTUs. To 
control for PCR bias and to normalize the community (McMurdie and 
Holmes 2014), we used variance stabilization normalization in the 
DESQ2 package in R (Love et al., 2014). 

To test for differences in soil activity across the transition, potential 
extracellular enzyme activity levels (EEA) were measured. For soil 
collection, a sterilized 15 mL plastic tube (1.5 cm diameter) was pushed 
into the soil at the base of the plant to a depth of 10 cm. Samples were 
kept cool (cooler in the field, refrigerator in the lab) and processed 
within 48 h of collection to prevent enzyme degradation. The potential 
activity levels of four enzymes (alkaline phosphatase: AlkP – removes 
phosphate group from organic molecules, beta-N-acetyl- 
glucosaminidase: NAG – degrades chitin, alanine aminopeptidase: AAP 
– cleaves amino acids from proteins at the N-terminus, and beta- 
glucosidase: BG – separates glucose from cellooligosaccharides) were 
measured fluorometrically following methods of Stursova et al. (2006). 
Potential enzyme activity levels were calculated as nmol of product 
produced per hour per gram of soil (nmol h− 1 g soil− 1) and per gram OM 
(nmol h− 1 g OM− 1). To calculate field soil moisture, subsamples were 
weighed and dried at 60 ◦C. With a subsample, percent organic matter 
was calculated via loss on ignition, after samples were burned at 500 ◦C 
for 4 h. 

2.3. Data processing and statistical analysis 

For all statistical models, plant species (L. tridentata, B. eriopoda, B. 
gracilis, P. jamesii) and habitat (shrubland, ecotone, grassland) were 
included as main effects without interactions because habitat is defined 
by species and therefore not independent, and position along the tran
sect was included as a random variable. All statistical analyses were 
performed using R (version 3.5.1, R Core Team, 2018) with an alpha of 
0.05. All mixed effect models were created using lmer in the lme4 
package (Bates et al., 2015) with fixed effects significance determined 
using a type 3 anova in lmerTest (Kuznetsova et al., 2017). Potential 
differences in soil texture and chemistry between habitats and species 
were tested using a separate mixed effect model for each soil charac
teristic (% sand, % clay, % silt, % organic matter (OM), and ppm of P, K, 
and NO3–N). 

To assess differences in soil microbial community composition, the 
abundances of fungal OTUs in each sample were compared via a non- 
metric multidimensional scaling (NMDS) approach using the Bray- 
Curtis dissimilarity metric. A distance based perMANOVA was used to 
test if soil fungal communities differed between plant species or habitats 
with position along the transect included as a strata variable using the 
‘adonis’ function in the ‘vegan’ package (Oksanen et al., 2017). To 
determine which taxa were most influential in differentiating fungal 
communities under plants across the transition, we examined similarity 
percentages of taxa within the Bray-Curtis dissimilarities with the 
‘simper’ function in the ‘vegan’ package. To test if community compo
sition was related to abiotic soil properties, we ran a mantel test using 

the ‘mantel’ function in the ‘ecodist’ package (Goslee and Urban 2007) 
to examine possible correlations between the soil taxa and abiotic 
dissimilarity matrices [using an Euclidean distance matrix of standard
ized abiotic matrix (decostand function in the ‘vegan’ package using 
range standardization)] and examined the fit of soil characteristics 
vectors in the ordinal space of the soil community using ‘envfit’ function 
in the ‘vegan’ package. We also compared three diversity indices, 
Shannon, Simpson, and Chao1 (calculated on the non-normalized ma
trix), among plant species and habitats with a separate mixed effects 
model (described above) for each index. 

To test if microbial activity varied among habitats and dominant 
plant species, EEA were compared among systems and species with a 
separate mixed effect model (described above) for each enzyme (NAG, 
BG, AAP, AlkP) and type of activity (per gram soil or OM), for a total of 8 
tests. For some enzymes, activity levels were log transformed to meet 
model assumptions. To test for a correlation between enzyme activity 
and abiotic soil properties, a mantel test was employed to compare the 
two matrices (using Euclidean distance matrices), and the fit of enzyme 
activity vectors in the ordinal space of the soil community was tested 
using the ‘envfit’ function in the ‘vegan’ package. To compare potential 
fungal activity further, we extracted putative ecological function from 
each soil community using FUNGuild, which uses taxonomic informa
tion to group fungal sequences into ecological guilds (Nguyen et al., 
2016). Specific functional guilds of interest included endophytes, plant 
pathogens, arbuscular mycorrhizal fungi, symbiotrophs, and sapro
trophs at a confidence level of “Probable” or “Highly Probable”. These 
analyses utilized the most resolved classification we were able to obtain 
using the multiple methods described above. In general, little or no 
functional annotations are possible for OTUs that are not identified to 
family or finer levels. A separate mixed effects model (described above) 
was run for each functional guild to test if number of reads differed 
among plant species or locations. Taxa that classified to guilds according 
to FUNGuild made up 45% of the OTUs and 44% of the VST normalized 
reads. Data and code associated with this project are publicly available 
(Ladwig et al., 2021). 

3. Results 

All measures of soil texture and chemical properties beneath plants 
differed significantly between at least two of the habitats along the 
grassland to shrubland transition (Table 1). For several soil character
istics (N, % content of clay, sand, and OM), shrubland and grassland soils 
had similar levels while ecotone soils were different from each of the 
other two (Table 1, Fig. 2). Amount of K was the only soil characteristic 
that varied with plant species; specifically, K concentrations were 

Table 1 
Statistical model results for comparisons of soil texture and chemistry under the 
four dominant plant species in the three habitats (grassland, ecotone, shrub
land). Values in parenthesis are model and residual degrees of freedom.   

Model Species Habitat 

Soil Texture 
Clay p 0.0005 0.15 0.0005 

F 5.4 (5, 49)  8.9 (2, 49) 
Silt p 0.02 0.87 0.004 

F 2.9 (5, 49)  6.3 (2, 49) 
Sand p 0.0007 0.47 0.0001 

F 5.1 (5, 49)  11.1 (2, 49)  

Soil Chemistry 
OM (%) p <0.0001 0.75 <0.0001 

F 10.1 (5, 50)  21.7 (2, 50) 
N (NO3 ppm) p 0.04 0.56 0.005 

F 2.5 (5, 50)  5.9 (2, 50) 
P (ppm) p <0.0001 0.12 <0.0001 

F 62 (5, 50)  102.0 (2, 50) 
K (ppm) p <0.0001 0.002 <0.0001 

F 21.2 (5, 50) 5.8 (3, 50) 37.7 (2, 50)  
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significantly higher under B. gracilis than any other species. This dif
ference among grass species could suggest a habitat by species interac
tion that we were unable to test statistically, since K was also 
significantly higher in grasslands (Table 1) and B. gracilis was only found 
in grasslands while B. eriopoda and P. jamesii were present in both 
grasslands and ecotone. 

Composition of soil fungal communities varied among plant species 
(p = 0.007, F3,50 = 1.24, R2 = 0.06) and habitats (p < 0.007, F2,50 =

4.33, R2 = 0.14) based on the perMANOVA test using fungal species 
abundances (Fig. 3). Pairwise comparisons indicated distinct commu
nities among all three habitats (all p < 0.001), and all plant species (p <
0.01), with the exception of B. eriopoda and P. jamesii (p = 0.55; Fig. 4). 
Based on comparisons of taxa driving differences in community 
composition, according to SIMPER, soil fungal communities differed 
more by plant species than by location (Fig. 4). Based on the Mantel test, 
fungal composition was also related to soil texture and nutrients (r =
0.33, p = 0.001), specifically with regard to soil clay, P, and K content (p 
= 0.01, p < 0.001, p < 0.001, respectively). Soil fungal diversity 
(Shannon, Simpson, Chao1) did not statistically differ between plant 
species or habitats (p > 0.40 for all indices; Figure S1). 

Extracellular enzyme activity showed limited variation between 
habitats, plant species, or abiotic soil properties. For enzyme activity per 
gram soil, NAG differed between habitats, with significantly higher ac
tivity levels in grasslands than ecotones (p = 0.01, F2, 50 = 4.9; Fig. 5), 
but did not vary among plant species (p = 0.9). For enzyme activity per 
gram OM, there were no differences in activities among habitats or plant 
species (p > 0.1 for all enzymes). Based on Mantel test results, enzyme 

activity levels were not related to soil abiotic factors (r = 0.04, p = 0.3). 
When comparing FUNGuild classifications, the abundance of 

different functional guilds did not statistically differ among species or 
location. Although, the VST normalized reads abundance of arbuscular 
mycorrhizae trended towards having lower abundance in shrubland 
soils compared to ecotone soils (p = 0.059, F2, 50 = 2.99; Fig. 6). 

4. Discussion 

Within the Chihuahuan Desert system, grasslands and shrublands 
have distinct plant and soil fungal communities, while the ecotone re
gion shares plant and fungal taxa with both habitats (Figs. 1 and 3). 
Differences in fungal communities under grasses and shrubs in the 
ecotone were partially due to the fact that soil under grasses had unique 
fungal taxa not found under shrubs (Fig. 4). This could reflect differ
ences in the amount of time these plant species were present in this 
system, specifically grasses have been at the site longer than shrubs. It 
often takes time for host plants to cultivate a more specialized microbial 
community, so possibly L. tridentata plants in the ecotone have not had 
sufficient time to alter soil communities to match communities in 
shrublands. We do not know the age of individual shrubs, so it is unclear 
how long these L. tridentata plants have been in the ecotone, but many 
have been there for decades. Also, shrubs may be less reliant on a spe
cific microbial community composition and perform well in grassland 
soils. Changes in soil microbial composition with shrub encroachment 
occur in a variety of other systems (Collins et al., 2016; Li et al., 2017; 
Schwob et al., 2017; Xiang et al., 2018), so the response observed here is 

Fig. 2. Soil chemistry (A -D) and texture (E - 
G) under dominant plant species in the 
Chihuahuan Desert shrubland, ecotone, and 
grassland. Bars represent the first through 
third quartiles of the data, with the median 
as the center line. Different letters indicate 
statistically different values across habitats. 
For soil texture, each point represents an 
individual soil sample. Texture statistically 
differed among habitats but not species 
(Table 1), so all points are colored the same 
within each habitat. OM = organic matter.   
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not limited to this desert grassland (Fig. 3). 
Over half of the fungi identified in our samples were members of the 

Ascomycota or Basidiomycota while >15% of the fungal community 
were unclassified beyond kingdom. Arbuscular mycorrhizal fungi within 
the Glomeraceae, including several Glomus spp. and Kamienskia divar
icata, were also present. While members of the Glomeromycota are ex
pected to be common in SNWR grasslands, early molecular studies 
targeting fungal ITS sequences, but using different fungal-specific PCR 
primers (ITS1-F/ITS4), failed to find significant numbers of sequences 
from this group (Porras-Alfaro et al., 2008). Detection was possible, 
however, employing primers specific for Glomeromycota (Porras-Alfaro 
et al., 2007). The abundance of Glomeraceae sequences in our samples 
supports results obtained with whole-metatranscriptome sequencing 
with SNWR soils (Hudson et al., 2015), and it suggests that the 
5.8S-Fun/ITS4-Fun primer set employed here is superior to the 
ITS1-F/ITS4 primer set employed in early studies in terms of amplifying 
Glomeromycota sequences. Our sequences that match the 
recently-described K. divaricata are potentially interesting in the context 
of this aridland ecosystem. This species was described from sand dunes 
in South Africa, and sequences matching this species have been reported 
from soils in Texas, USA (Błaszkowski et al., 2016). 

Of additional interest are sequences from species of Monosporascus 
(Ascomycota, Xylariales) found here in shrubland soils (Fig. 4). Species 
of Monosporascus are among the most common root endophytes 

obtained from culture and molecular studies at the SNWR (Porras-Alfaro 
et al. 2008, 2014; Dean et al., 2015; Robinson et al., 2020). The genus is 
known primarily from aridland ecosystems, and multiple species of the 
genus occur on diverse trees, shrubs, and grasses at the SNWR. Mono
sporascus sequences in our soil samples likely reflect the presence of 
spores, hyphal fragments, or contaminating root fragments. The abun
dance of these sequences further supports the importance of these spe
cies at the SNWR, and in this case the data suggest a skewing of 
abundance toward the shrub samples. 

In terms of compositional differences among habitats and hosts, we 
note that a number of arbuscular mycorrhizal fungal taxa (Glomus, 
Glomeromycota) were more abundant in grasslands than shrublands 
(Figs. 3 and 4), despite the fact that many perennial plant species in the 
Chihuahuan Desert, including many grass species and L. tridentata, 
commonly form associations with arbuscular mycorrhizal fungi (Collier 
et al., 2003). In contrast, a number of decomposer basidiomycetes, such 
as Conocybe, Crinipellis, Lepiota, and Tulostoma, were more abundant in 
shrublands (Fig. 3) and/or in association with the shrub Larrea tridentata 
(Fig. 4). This is likely due to the higher lignin content of shrubs and 
suggests major functional differences in shrub versus grass-associated 
fungal communities, since lignin-degrading enzymes are well repre
sented in these Basidiomycota but not in Ascomycota. Detritus can 
accumulate under shrub canopies leading to higher nutrient concen
trations, also called “islands of fertility” (De Soyza et al., 1997), which 
may support a greater abundance of fungal decomposers. Furthermore, 
differences in litter quality not only influence decomposition rates, as 
leaves of L. tridentata contain more lignin and therefore decompose at a 
slower rate than dominant grasses, but also could differentially shape 
belowground communities (Vanderbilt et al., 2008). 

Both positive and negative plant-soil feedbacks help explain tem
poral dynamics of dominant grass species at this study site (B. eriopoda & 
B. gracilis; Chung et al., 2019) and could influence the success of L. tri
dentata shrubs in the ecotone. The ecological roles of most members of 
the soil fungal community remain unknown, yet for the taxa that can be 
categorized into key functional guilds there was little variation among 
sampling locations (Fig. 6). It remains unclear if shrubs are moving into 
hospitable or hostile soil communities. Given that L. tridentata thrives in 
the ecotone despite not having the identical plant-associated fungal 
community found in the shrublands, shrub encroachment may not be 
limited strictly by the soil fungal community. It appears that shrubs 
initially invade the grasslands and then the shrubland-associated soil 
fungi follow thereafter. Further experimentation paired with these ob
servations will illuminate the regulating power of plant-soil feedbacks 
on the spread of L. tridentata into desert grasslands. Additionally, given 
the differences observed here, it is possible that invading shrubs can tip 
the balance of competition and alter biotic conditions to their benefit by 
modifying both soil communities and physical properties (D’Odorico 
et al., 2010; He et al., 2015). 

Complex interactions exist among secondary compounds, plants, and 
microorganisms. Examples include the reported roles of plant secondary 
compounds in encouraging the growth of beneficial bacteria in the 
rhizosphere while inhibiting plant pathogenic fungi (Schulz-Bohm et al., 
2018; Stringlis et al., 2018), as well as legacy effects of soil fungal 
communities in shaping plant succession (Semchenko et al., 2019; 
Heinen et al., 2020). Larrea tridentata produces a host of secondary 
compounds, including many volatile organic compounds (Hyder et al., 
2002; Jardine et al., 2010), and it is reported to be allelopathic (Mahall 
and Callaway 1991). In principle, secondary compounds could help 
facilitate L. tridentata encroachment by influencing microbial commu
nities. Although the effects of secondary compounds from L. tridentata on 
microbial community composition are unknown, toxicity of L. tridentata 
compounds has been reported for fungi (Vargas-Arispuro et al., 2005), 
mammals (Meyer and Karasov 1989; Mangione et al., 2004), microfauna 
(Fowler and Whitford 1980) and bacteria (Martins et al., 2013), sug
gesting the potential to alter microorganism assemblages. 

When using extracellular enzyme activity levels as proxies for soil 

Fig. 3. Soil fungal communities, based on fungal OTU abundance, under plants 
along the shrubland to grassland transition. Plant species are designated by 
different shapes and location depicted with different colors. The top 20 fungi 
associated with each end of MDS2 are listed in rank order under the corre
sponding end of the axis. 
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microbial activity, we found largely similar rates of nutrient processing 
across samples (Fig. 5), regardless of the dominant plant or habitat. 
Similar soil enzyme activity levels following shrub encroachment have 
also been observed in Mediterranean semiarid grasslands (Maestre et al., 
2011). In our study, consistently low soil organic matter content 
(ranging from 0.7 to 1.2%, Fig. 2) could explain the similar enzyme 
activity levels among species and sites. Most energy and nutritional re
sources are gained from breaking down organic matter. Since there was 
low organic matter content throughout the site, enzyme activities were 
limited by amount of substrate, regardless of whether present in the 
ecotone, grassland, or shrubland. Organic matter content was lowest in 
ecotone soils (Table 1, Fig. 2), which may explain why one enzyme 
(NAG) had statistically lower activity levels per gram soil in the ecotone 
than in grassland (Fig. 5) and why two other enzymes showed similar 
trends (AlkP, AAP). 

Interesting patterns occur at the ecotone – the place where ecosys
tems mix. In the ecotone, both plant and soil fungal communities 
possessed a combination of taxa from the discrete grassland and 

shrubland ecosystems (Fig. 3). Yet for soil abiotic conditions, some 
opposite patterns emerge as several soil properties were similar in 
grasslands and shrublands but distinct in the ecotone (Fig. 2). For 
example, percent sand, silt, and clay were similar under plants in 
grasslands and shrublands, while ecotone soils were sandier with less 
clay (Fig. 2). Additionally, both organic matter content and N levels 
were lower in ecotone soils relative to grasslands and shrublands 
(Fig. 2). The depletion of soil resources within the ecotone could reflect 
the influence of both shrubs and grass species in the system. Desert 
grasses and shrubs have different resource allocation strategies, such as 
different spatial distribution of roots (Lee and Laurenroth 1998; Gibbens 
and Lenz 2001), so when living together in the ecotone they may com
plement each other to deplete resources more completely. As species 
distributions and ecosystem boundaries continue shifting in response to 
global change (Peters 2002; Kelly and Goulden 2008; Chen et al., 2011; 
Ash et al., 2017), low soil resources along transitions between ecosys
tems may influence expansion rates and could interact with other 
plant-soil feedbacks influencing rates of advancement (Levine et al., 

Fig. 4. Fungal taxa that mainly contributed to differences in soil communities below the shrub, L. tridentata, specifically (A) comparisions of L. tridentata soils in the 
ecotone and shrubland, and in the ecotone comparisions of L. tridentata with (B) P. jamseii and (C)B. eriopoda (C). Taxa with significantly different abundances based 
on SIMPER are listed under each plant/location which had the higher abundance. The pie charts depict broad functional guilds for a subset (≥60%) of the listed taxa 
that had functional guild assignments. 
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2006; van der Putten et al., 2010; van Grunsven et al., 2010; Suding 
et al., 2013; Dawson and Schrama 2016; Engelkes et al., 2018). Addi
tional sampling across the ecotone beyond the transect sampled for this 
project will allow us to understand how consistent these patterns are as 
shrubs continue advancing into neighboring grasslands. 

As climate and other global factors continue changing and influ
encing species range boundaries, investigations that include microbial 
associations can provide a more complete understanding of future spe
cies spread and changes in ecosystem function. Given the many wide
spread causes of shrub encroachment (Heisler et al., 2003; Archer et al., 
2017), it will likely continue into the future. Combining baseline 

information regarding how microbial communities change across space 
with temporal monitoring and experimentation directly testing the 
regulating contributions of microbes will help us understand the full 
influence of microbial communities on range expansions. After several 
decades in the system, soil fungal communities under L. tridentata shrubs 
that successfully invaded Chihuahuan Desert grasslands reflected a mix 
of both grassland and shrubland fungal species. 

Author contributions 

LML, KCB, and SLC developed research ideas, LML, KCB, and DON 
collected data, LML, LPB, and DTL analyzed data, and all authors 
contributed to writing. 

Acknowledgements 

We thank D. Colman, M. Hutchinson, R. Sinsabaugh, and D. Warnock 
for helpful lab assistance and discussions regarding EEA and DNA 
extraction methods and thank C. Pausche for measuring soil texture. 
Thank you to the Sevilleta National Wildlife Refuge for allowing this 
research on their land. This work was supported by the National Science 
Foundation via a DDIG award DEB-1210309, and DEB 1232294 to the 
University of New Mexico for Long-term Ecological Research. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.funeco.2021.101096. 

Fig. 5. Extracellular enzyme activities under dominant plants along the 
shrubland to grassland transition. Bars represent the first through third quar
tiles of the data, with the median as the center line. Different letters indicate 
statistical differences in enzyme levels across habitats. AP = alkaline phos
phatase, NAG = beta-N-acetyl-glucosaminidase, AAP = alanine aminopepti
dase, BG = beta-glucosidase. 

Fig. 6. Count of reads (VST normalized) for different functional categories 
based on FUNGuild classifications. 
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