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Abstract

The replacement of native C4-dominated grassland by C3-dominated shrubland is considered an ecological state tran-

sition where different ecological communities can exist under similar environmental conditions. These state transi-

tions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in

woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid

ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan

Desert, we found established shrubland to sequester 49 g C m�2 yr�1 on average, while nearby native C4 grassland

was a net source of 31 g C m�2 yr�1 over this same period. Differences in C exchange between these ecosystems were

pronounced – grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosys-

tem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem

respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland

than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavor-

able, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial

increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services

that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to eco-

system services often linked to grassland to shrubland state transitions may at least be partially offset by increased

ecosystem carbon sequestration.
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Introduction

The replacement of dominant vegetation communities

via ecological state transitions is occurring worldwide

as a consequence of global environmental change

(Scheffer & Carpenter, 2003), and these transitions may

alter the quality and timing of key ecosystem services

(Schlesinger et al., 1990; Maestre et al., 2012). Ecological

state transitions are especially common in aridland eco-

regions in response to multiple anthropogenic drivers,

and the potential for climate-induced state transitions

may be increasing (Reynolds et al., 2007; Diffenbaugh

et al., 2008; D’Odorico et al., 2012). Climate model simu-

lations for the southwestern United States predict

greater aridity in the coming decades because of war-

mer temperatures and more variable precipitation

regimes (Seager et al., 2007; Gutzler & Robbins, 2011),

and additional projections suggest that the summer

monsoon may occur later in the growing season (Seth

et al., 2011). In addition to long-term change, extreme

drought events in the southwestern US have had pro-

found effects on vegetation communities regionally and

locally in the past 60 years (Breshears et al., 2005). It fol-

lows that the greater aridity produced by a changing

climate is likely to increase the frequency and extent of

ecosystem state transitions.

One widespread ecological state transition in arid

and semiarid ecosystems is from C4-dominated grass-

land to C3-dominated shrubland (Eldridge et al., 2011).

As a state transition, shrub encroachment often results

in permanent and measurable changes to ecosystem

functioning and includes reduced plant species diver-

sity (Baez & Collins, 2008; Knapp et al., 2008; Ratajczak

et al., 2012), increased spatial heterogeneity in resource

availability (Bhark & Small, 2003; Turnbull et al., 2010),

increased surface temperatures (D’Odorico et al., 2010,

2012), and altered timing of ecosystem mass and energy

exchange (Kurc & Small, 2007; Brunsell et al., 2011).

These changes may in turn feed back to promote fur-

ther state transition (D’Odorico et al., 2013). As a benefi-

cial change in services, some studies have shown an
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increase in above- or belowground ecosystem carbon

sequestration as a result of grassland to shrubland state

transitions (Jackson et al., 2002; Emmerich, 2007; Knapp

et al., 2008). In the Chihuahuan Desert, the conditions

under which grassland and shrubland may outperform

each other remain unclear; Kurc & Small (2004, 2007)

found grassland to be more productive than creosote-

bush-dominated shrubland during relatively wet grow-

ing seasons, whereas Throop et al. (2012) found that

mesquite-dominated shrubland was more productive

than grassland in a water-manipulation experiment. In

other aridland systems, variables including groundwa-

ter depth (Scott et al., 2014) and soil inorganic carbon

content (Emmerich, 2003) may additionally influence

grassland and shrubland productivity and ecosystem C

sequestration.

Understanding how carbon exchange is altered by

changing ecological states is of primary importance for

modeling land surface processes in GCMs (Schimel,

2010). Arid and semiarid ecoregions cover 40% of the ter-

restrial land surface and may have an important influ-

ence on patterns of global carbon sequestration during

years of above average precipitation (Reynolds et al.,

2007; Poulter et al., 2014). Although arid ecosystems

exhibit relatively low net primary production, increas-

ing lignification and aboveground carbon storage as a

result of shrub encroachment may increase above- and

belowground carbon sequestration (Jackson et al., 2002;

Emmerich, 2007). It is unclear, however, if C sequestra-

tion is consistent through time, or can be maintained

under likely scenarios of increased aridity due to global

climate change (Poulter et al., 2014). By quantifying the

carbon sequestration dynamics of established grassland

and shrubland communities, we can elucidate the

degree to which grassland to shrubland transitions

impact ecosystem carbon sequestration potential.

We measured differences in production and ecosys-

tem carbon exchange dynamics between established

Chihuahuan Desert grassland and nearby creosotebush

shrubland in response to interannual availability in

moisture, to determine if the state transition from C4-

dominated grassland to C3-dominated shrubland

resulted in increased C sequestration. During our 5-

year study, total annual precipitation was at or below

average, providing an analog to the type of drier condi-

tions that are likely to occur in coming decades (Gutzler

& Robbins, 2011). We measured precipitation, soil

moisture, aboveground and belowground net primary

production, and ecosystem carbon and energy

exchange to: (i) compare the annual production and

carbon sink strength of grassland and shrubland com-

munities; (ii) characterize grassland and shrubland car-

bon exchange dynamics at daily, seasonal and

interannual timescales; and (iii) determine the sensitiv-

ity of grassland and shrubland productivity to soil

moisture availability and energy partitioning during

their active growing seasons. By doing so, we identified

the carbon sequestration potentials of arid grassland

and shrubland, and identified the biotic and abiotic

variables that shaped carbon exchange in these ecosys-

tems over multiple temporal scales.

Site

Our research was conducted at the Sevilleta National

Wildlife Refuge (SNWR), NewMexico, USA (34.3°N lat-

itude, 106.8° W longitude). At the SNWR, temperature

and precipitation interact to drive a bimodal growing

season that is punctuated by two periods of vegetation

production (Notaro et al., 2010). The spring growing

season is driven by increasing temperature and soil

moisture derived from winter rainfall, and the summer

growing season is driven by monsoon rainfall (Penning-

ton & Collins, 2007; Muldavin et al., 2008). The period

between these seasons (approximately May–June) is

typically water-limited. Mean annual precipitation for

the grassland and shrubland sites was 244 mm from

1996 to 2011, and 125 mm of this (51%) occurred during

the summer monsoon from July to September. During

our study from 2007 to 2011, precipitation at the grass-

land site averaged 208 mm annually and 93 mm during

the summer monsoon (�14.8% and�25.6% compared to

1996–2011, respectively), and the shrubland site aver-

aged 226 mm annually and 100 mm during the summer

monsoon (�7.4% and�20.0%, respectively; Fig. 1).

The northern boundary of creosotebush shrubland

and the southern boundary of mixed blue and black-

grama grassland coexist at the SNWR, and northward

expansion of creosotebush into desert grassland is

ongoing in the Chihuahuan Desert region (Peters et al.,

2006). We used long-term data from an eddy covariance

tower in black grama (Bouteloua eriopoda)-dominated

desert grassland (34.362° N, 106.702° W) and another

tower 5 km south in creosotebush (Larrea tridentata)-

dominated shrubland (34.335° N, 106.744° W). Eleva-

tion at both sites is approximately 1615 m. After a 2009

fire (DOY 217), a new tower was installed in a nearby

unburned grassland location approximately 1.5 km

away (34.355° N, 106.675° W), and we used data from

this tower in 2010 and 2011. Therefore, we did not have

data from 4 August 2009 to 1 January 2010 in grassland.

Materials and methods

Aboveground production (ANPP: g C m�2 yr�1) was mea-

sured in spring (May) and fall (September–October) each year

from 2007 to 2011 at the creosote shrubland and at the mixed

grassland sites. Between 22 and 40, 1 m2 permanent quadrats
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were located at each grassland and shrubland site for measur-

ing ANPP using a nondestructive allometric sampling method

and linear regression based on measured species volume units

developed from total standing biomass measurements (Hu-

enneke et al., 2001; Muldavin et al., 2008). Belowground pro-

duction (BNPP: g C m�2 yr�1) was measured each year using

root ingrowth ‘donuts’ (Milchunas et al., 2005). During this

period, 10 replicate ingrowth structures in mixed grassland

and creosotebush shrubland were harvested annually in

November at 0–15 cm and 15–30 cm depth. The majority of

grassland root biomass occurs in the upper 30 cm of soil

whereas shrub roots can penetrate much deeper (Kurc &

Small, 2007). Soil were sieved (2 mm) to remove roots, which

were then dried at 60 °C and weighed to estimate below-

ground biomass (g m�2 yr�1). Data presented here are the

combined production estimates from 0 to 30 cm.

Fluxes of surface carbon dioxide, water and energy were

measured continuously from identical, tripod-based eddy

covariance instruments at the mixed grassland and creosote-

bush shrubland sites from 2007 to 2011 (Anderson-Teixeira

et al., 2011). In both sites, a three-axis sonic anemometer (Camp-

bell Scientific CSAT-3, Logan, UT, USA) measured vertical

wind speed, and an open-path gas analyzer (LiCor LI-7500, Lin-

coln, NE, USA) measured carbon and water vapor concentra-

tions. We compiled covariances to 30 min averages, corrected

for temperature and water vapor influences (Webb et al., 1980),

and sensor separation and frequency responses (Massman,

2000). We used a planar fit coordinate system to account for

anemometer tilt (Anderson-Teixeira et al., 2011). We removed

data in the case of instrument malfunction, when winds were

coming from behind the tower, when wind speed was too low

(low friction velocity), and during rainfall events. This resulted

in very few data gaps and did not limit our gapfilling proce-

dure. We gapfilled NEE, latent and sensible energy fluxes and

estimated ecosystem respiration (RE) using the Max Planck

Institute (Open MPI) procedure (Falge et al., 2001; Reichstein

et al., 2005) (]http://www.bgc-jena.mpg.de/~MDIwork/ed-

dyproc/index.php). We calculated gross primary production

as NEE + RE. Carbon flux data of net ecosystem exchange

(NEE), gross primary production (GPP), and ecosystem respi-

ration (RE) are presented in this study as g C m�2 time�1.

We used daily GPP to estimate the growing season onset

and vegetation senescence in grassland and shrubland, where

onset was the first day of 10 consecutive days where GPP

> 0.25 g C d�1 in spring or summer, and senescence was the

last day of 10 consecutive days where GPP < 0.25 g C d�1 in

fall or winter. This basic threshold technique was sensitive to

the abrupt changes in vegetation production that occur at the

beginning and end of the growing season in the Chihuahuan

Desert (Kurc & Small, 2007; Collins et al., 2008).

Soils at the grassland site are classified as Turney loamy

sand and soils at the shrubland site are classified as a mix

between Turney loam and Nickel-Caliza very gravelly sandy

loam. Differences in soil texture result in a saturated hydraulic

conductivity (Ksat) of 1.5–5.0 cm h�1 at the grassland site and

a Ksat of 2.5–8.5 cm h�1 at the shrubland site (United States

Department of Agriculture NRCS, 2013).

Volumetric soil moisture was measured from 2007 to 2011

at grassland and shrubland eddy covariance tower sites using

soil water content probes (Campbell Scientific CS 616) buried

horizontally at 2.5 cm, 12.5 cm, 22.5 cm, 37.5 cm and 52.5 cm

depth in 6 pits at each site, 3 under vegetation and 3 in vegeta-

tion interspaces. These probes measure volumetric soil mois-

ture using a time-domain technique, and are accurate at the

low h values that often occur in aridland soils. At the mixed

grassland sites, data were available beginning on DOY 163 in

2007, for all of 2008, were not available in 2009, and were avail-

able beginning on DOY 56 in 2010 and for all of 2011. At the

shrubland site, data were available beginning on DOY 157 in

2007, for all of 2008, beginning on DOY 176 in 2009 and for all

of 2010–2011. Soil moisture was recorded as 30 min averages

and converted to mean daily soil moisture for all analyses. To

account for differences in water-holding capacity in soils at the

grassland and shrubland sites, we normalized soil moisture as

relative extractable soil moisture (hr), calculated as:

hr ¼ h� hw
hfc � hw

ð1Þ

where hw is soil moisture at vegetation wilting point and hfc is
soil moisture at soil field capacity. Due to the depth of the soil

moisture profile data, we estimated hw to be the lowest

observed h value from 2007 to 2011 (hw = 0.065 shrubland;

0.061 grassland), and estimated hfc from soil water holding

capacity and profile depth (hfc = 0.35 shrubland; 0.31 grass-

land) (United States Department of Agriculture NRCS, 2013).

These values corroborated with soil moisture release curves

obtained for soils at the grassland and shrubland eddy covari-

ance tower sites. All statistics, analyses and figures were pro-

duced using R (R Development Core Team, 2011).
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Fig. 1 Total annual and monsoon precipitation at the creosote-

bush shrubland (S) and mixed grassland (G) site in 2007–2011

(Panel a) and mean daily relative extractable soil moisture (hr)
(Panel b). Mean monsoon precipitation and mean annual pre-

cipitation from 1996 to 2011 are indicated by horizontal lines in

Panel a. hr was greater on average at the grassland site

(P < 0.001).
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Results

Our study period was slightly drier than average

[208 mm annually (14.8% lower than 1996–2011 mean),

93 mm monsoon (25.6% lower than 1996–2011 mean)].

The year 2011 was very dry, 2006 (the year prior to our

study) had an especially strong monsoon season, and

2009 had high October rainfall. From 2007 to 2011, total

annual precipitation was similar between grassland

and shrubland (P > 0.05), although mean daily hr was

6.6% higher in grassland (P < 0.001) (Fig. 1). Mean

daily Bowen Ratio (b) did not differ between sites

(P > 0.97), however, indicating that grassland and

shrubland experienced similar turbulent energy flux

partitioning during our study.

Despite having higher average annual net primary

production than shrubland from 2007 to 2011, desert

grassland was a net carbon source (annual positive

NEE) while the adjacent shrubland was a net carbon

sink (annual negative NEE; Figs 2 and 3). In general,

NPP (above- plus belowground) and NEE in grassland

were more variable than shrubland, resulting in a net

carbon loss from grassland of 31.1 g C m�2 yr�1 on

average, while the less variable, lower production

shrubland had a net C uptake of 49.0 g C m�2 yr�1.

Despite measured above- and belowground plant

growth, grassland was a net source of carbon in four of

the 5 years of our study (Fig. 2b). This pattern was par-

ticularly notable in 2007 and 2008, where grassland

NPP was larger than shrubland NPP, yet grassland

NEE indicated annual net carbon loss (Figs 2 and 3).

NPP data from grassland and shrubland in 2005 and

2006 (2 years prior to our study) were not anomalous

from those of 2007–2011 (Figs 2a and 3a), suggesting

that the pattern of grassland and shrubland carbon

sequestration were likely similar over the 7 year per-

iod.

Although grassland net primary production was

higher and more variable on average than shrubland

(105 � 67 g and 77 � 26 g C m�2 yr�1, respectively,

Figs 2a and 3a), annual shrubland GPP was 5% higher

than grassland GPP (GPP = 159 g C and 152 g

C m�2 yr�1, respectively, Figs 2c and 3c). The timing of

maximum GPP differed seasonally between grassland

and shrubland. Based on GPP, grassland was most

active in spring and summer, whereas shrubland was

most active in spring and fall (Table 1). Average shrub-

land growing season was 27 days longer than that of

grassland (Fig. 4), with shrubland notably more active

later in the growing season than grassland. Therefore,

ground measurements of NPP did not corroborate with

eddy covariance measurements of GPP. NPP by defini-

tion cannot be negative, whereas eddy covariance mea-

surements include total ecosystem C exchange. Some

differences may also result from root production below

the 30 cm threshold in shrubland (Jackson et al., 2002).

The ratio of RE to GPP shows that RE was 20% higher

than GPP in grassland (RE/GPP = 1.2), whereas this

ratio in shrubland shows that RE was 30% lower than

GPP in shrubland (RE/GPP = 0.7). Grassland RE was

66% higher than shrubland RE (RE = 183 g C and

110 g C m�2 yr�1, respectively). Annually, slightly

higher GPP in shrubland and much higher RE in grass-

land resulted in an average difference in carbon assimi-

lation of 80.1 g C m�2 yr�1 between grassland and

shrubland during our study.

The difference in daily values of NEE between grass-

land and shrubland was largest during dry days

(Bowen Ratio: b > 5). Bowen Ratio (b: H/LE) measure-
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Fig. 2 Annual aboveground (ANPP) and belowground (BNPP)

production from 2005 to 2011 (Panel a), net primary production

(NPP) and net ecosystem exchange (NEE: g m�2 yr�1) from

2007 to 2011 (Panel b) and gross primary production (GPP) and

ecosystem respiration (RE) from 2007 to 2011 (Panel c) in desert

grassland and creosotebush shrubland.
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ments from eddy covariance data are the ratio of parti-

tioning between sensible energy (H) and latent energy

(LE) (Bowen, 1926). We observed daily mean Bowen

Ratio in this system to be more frequently influenced

by the availability of water than the availability of

energy, and higher b values indicate drier conditions

usually caused by low LE. Average GPP in grassland

and shrubland was similar at daily timescales (Fig. 5b),

but grassland RE was 0.2 g C m�2 day�1 (68%) higher

than shrubland RE on average, and this difference was

largest at high b values (Fig. 5c). During the growing

season, carbon exchange in grassland was more sensi-

tive to soil moisture variation than in shrubland, and

grassland often displayed higher daily GPP and lower

NEE than shrubland when soil moisture was available.

As hr increased from 10% to 20%, increasing GPP domi-

nated the grassland carbon balance, and grassland

became a net carbon sink where hr ~14.5% (Fig. 6b).

Grassland GPP also increased at a higher rate than RE

over this interval (Fig. 6c and d). Although shrubland

was a net carbon sink on average at every hr value, it
was a notably smaller sink than grassland at hr ≥ 15%

(Fig. 6b).
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Fig. 3 Annual aboveground (ANPP) and belowground (BNPP)

production from 2005 to 2011 (Panel a), net primary production

(NPP) and net ecosystem exchange (NEE: g m2 yr�1) from 2007

to 2011 (Panel b) and gross primary production (GPP) and eco-

system respiration (RE) from 2007 to 2011 (Panel c) in desert

grassland and creosotebush shrubland.

Table 1 Seasonal NEE and GPP

Spring Summer Fall Winter Total

Grassland

NEE (g)

7 9.5 4.5 10.1 31.1

Grassland

GPP (g)

42.8 65.6 28.2 15.5 152.1

Grassland

RE (g)

49.8 75.1 32.7 25.6 183.2

Grassland

NEE [%]

23 31 14 32 100

Grassland

GPP [%]

37 41 17 5 100

Grassland

RE [%]

27 41 18 14 100

Shrubland

NEE (g)

�21.9 �2.3 �19.4 �5.4 �49

Shrubland

GPP (g)

39.9 55.5 46.4 17.6 159.4

Shrubland

RE (g)

18 53.2 27 12.2 110.4

Shrubland

NEE (%)

45 5 39 11 100

Shrubland

GPP (%)

25 35 29 11 100

Shrubland

RE (%)

16 48 25 11 100
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Fig. 4 Mean daily gross primary production (GPP) from 2007

to 2011 shows that creosotebush shrubland had a longer grow-

ing season than desert grassland by 27 days on average, and

was notably more active late in the year.
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Discussion

Grassland and shrubland production and carbon
sequestration

The high variability in annual grassland production

observed in our study (Fig. 2) and by others (Kurc &

Small, 2007; Muldavin et al., 2008; Robertson et al., 2009)

illustrates the ability of grassland vegetation to capital-

ize on wet years at the cost of reduced sequestration

during dry years. Kurc & Small (2007) found that from

2000 to 2002, this grassland was a net C sink, but this

occurred under a precipitation regime that was 28%

higher (123 mm) than the monsoon average (96 mm) of

our study (2007–2011). During the growing season, soil

water availability strongly influenced grassland net car-

bon balance by preferentially increasing GPP compared

to RE (Fig. 6). Therefore, during relatively dry years, we

found grassland RE to be greater than GPP (Figs 2 and

5; Table 1). Grassland was a small net carbon sink only

in 2010 (Fig. 2b), possibly because spring production

was increased by rainfall during the prior October after

grassland plants had senesced. Conversely, this grass-

land was a large C sink during the relatively wetter

years of Kurc & Small (2004, 2007), and maximum GPP

may be up to two times higher in grassland than shrub-

land during periods of high soil moisture availability

(Kurc & Small, 2007; Robertson et al., 2009).
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In contrast to grassland, shrubland displayed lower

and less variable annual production (Fig. 3), and was a

small carbon sink in every year of our study. Shrubland

had a longer growing season than grassland, and

assimilated the majority of annual carbon during spring

and fall (84%), minimizing the effect of drier than aver-

age summer conditions (Fig. 1). The shrubland carbon

sink in fall was nearly as large as in spring (Table 1),

which has formerly been identified as the most produc-

tive period for creosotebush (Pennington & Collins,

2007; Muldavin et al., 2008). Although Sponseller et al.

(2012) found that creosotebush production may be

highest in response to wet summers, our results suggest

that dry conditions may alternately favor spring and

fall production (Table 1). During the dry years of our

study, shrubland was a small carbon sink at every time-

scale of analysis, and the characteristics of shrubland

carbon sequestration suggest this sink will persist in a

more arid future climate.

Soil respiration in semiarid ecosystems is often domi-

nated by heterotrophic respiration from soil biota (Bel-

nap, 2002; Collins et al., 2014), with precipitation and h
pulses having a large influence on RE during the grow-

ing season (Belnap et al., 2004; Jenerette et al., 2008). In

addition to this, we also observed RE ~0.6 g C

m�2 day�1 during the growing season in grassland at

hr ~5.0%, when biotic activity is expected to be limited

by low water availability (Fig. 6d). This efflux was not

observed in shrubland. Although inorganic C exchange

may be a large component of carbon balance in many

arid and semiarid ecosystems (Emmerich, 2003; Stone,

2008), the potential for emissions from belowground

petrocalcic soil horizons, determined from carbon iso-

tope analysis, is low in the northern Chihuahuan Desert

and not a significant source of carbon at the SNWR

(Serna-Perez et al., 2006; Breecker et al., 2012). Instead,

this carbon loss is likely a result of photodegradation of

senesced aboveground plant biomass, which adds an

additional, abiotic C flux out of the system (Rutledge

et al., 2010; Lee et al., 2012). Abiotic C efflux is therefore

an important component of carbon balance in this arid

grassland, measurably contributing to annual grassland

carbon loss.

Climate change and ecological state transitions

Carbon sequestration is likely to occur as a consequence

of shrub encroachment in the northern Chihuahuan

Desert. Over the past 100 years, monsoon season pre-

cipitation events have increased in frequency but

decreased in magnitude, and the longest wet and dry

periods have increased in length (Petrie et al., 2013).

Furthermore, projected later monsoon onset in the

southwestern US will reduce precipitation in July and
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increase it in October, when shrubs remain active but

grasses do not (Table 1; Fig. 4) (Seth et al., 2011; Cook

& Seager, 2013). At the SNWR, grassland was especially

sensitive to dryness during summer. In the driest year

of our study (2011), the grassland growing season was

only 14 days long based on GPP, whereas that of

shrubland was 48 days long. If future climate induces

greater aridity in summer, and monsoon precipitation

extends later into the fall, grassland will become

increasingly vulnerable to further shrub encroachment.

Although the specific mechanisms that induce grass-

land to shrubland state transitions in the southwestern

US are complex, our results indicate that shrub

encroachment will lead to increased carbon sequestra-

tion relative to grassland. If the shrubland carbon sink

strength averages 49 g C m�2 yr�1, as seen in our study

(Table 1), large-scale state transitions may increase the

regional carbon sink by as much as 490 kg C ha�1 yr�1

in the southwestern US. The potential for grassland to

shrubland land class change is also substantial; the

Southwest Regional Gap Analysis Project (SWReGAP)

estimates that there are 14.9 M hectares of blue and

black-grama dominated desert grassland in New Mex-

ico alone (USGS National Gap Analysis Program, 2014).

The sink potential of shrubland is produced by growth

of existing individuals as well as infill, which continues

to occur in areas undergoing encroachment. Indeed,

creosotebush density (by sapwood area) at this site,

which has been dominated by creosotebush for longer

than 40 years, actually increased from 2001 to 2013

(Fig. 7). Furthermore, Evans et al. (2014) found

increases in ecosystem C sequestration over 10 years in

a CO2 enrichment experiment in the Mojave Desert,

and Barron-Gafford et al. (2012) found higher C seques-

tration in mesquite woodland compared to grassland in

the Sonoran Desert. Due to these characteristics, the

shrubland carbon pool is likely to both persist and

increase in coming decades. Semiarid ecosystems have

a strong influence on interannual variability in terres-

trial carbon sequestration globally (Poulter et al., 2014),

and the patterns that we observed in our study suggest

that grassland carbon sequestration that occurs during

wet periods (Kurc & Small, 2004, 2007) is vulnerable to

decomposition during subsequent drier periods. Con-

versely, semiarid shrubland is notably less vulnerable

to carbon losses, and our results suggest that the state

transition of grassland to shrubland over large areas

(>1000 km2) would promote lower interannual variabil-

ity in terrestrial carbon sequestration.

Gains in C sequestration come at a cost to other eco-

system services provided by these desert grasslands. In

addition to ecological impacts, surface soil losses that

accompany land class change are a significant source of

dust and pollution in the southwestern US (Yin et al.,

2005; Field et al., 2010), and shrub encroachment will

lead to warmer winters in nearby urban areas as well

(D’Odorico et al., 2010, 2012). Land class change has

been shown to influence soil moisture-precipitation

feedbacks and precipitation patterns in the US Great

Plains (Brunsell et al., 2011), and state transitions in the

Chihuahuan Desert may alter land-atmosphere interac-

tions that are instrumental in driving vegetation activ-

ity during the summer monsoon (Dominguez et al.,

2008; Mendez-Barroso & Vivoni, 2010). In a future cli-

mate scenario where positive feedbacks may lengthen

and intensify regional drought periods (Gutzler & Rob-

bins, 2011), carbon sequestration, evaporation and

changing ecosystem services will all be important com-

ponents of climate change in the southwestern US.
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