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Abstract. Understanding controls on net primary production (NPP) has been a long-standing
goal in ecology. Climate is a well-known control on NPP, although the temporal differences among
years within a site are often weaker than the spatial pattern of differences across sites. Climate
sensitivity functions describe the relationship between an ecological response (e.g., NPP) and both the
mean and variance of its climate driver (e.g., aridity index), providing a novel framework for under-
standing how climate trends in both mean and variance vary with NPP over time. Nonlinearities in
these functions predict whether an increase in climate variance will have a positive effect (convex
nonlinearity) or negative effect (concave nonlinearity) on NPP. The influence of climate variance may
be particularly intense at ecosystem transition zones, if species reach physiological thresholds that
create nonlinearities at these ecotones. Long-term data collected at the confluence of three dryland
ecosystems in central New Mexico revealed that each ecosystem exhibited a unique climate sensitivity
function that was consistent with long-term vegetation change occurring at their ecotones. Our
analysis suggests that rising temperatures in drylands could alter the nonlinearities that determine the
relative costs and benefits of variance in precipitation for primary production.
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INTRODUCTION

Understanding patterns and controls on net primary pro-
duction (NPP) has been a long-standing goal in ecology.
Most prior analyses of climatic controls on NPP focus on
long-term patterns in average precipitation or temperature.
However, climate models consistently project increases in the
year-to-year variance of precipitation, even when mean trends
are ambiguous (Fischer et al. 2013, IPCC 2013). Increased
variance in precipitation is likely to interact with warmer
average temperatures to accelerate aridity and reduce soil
moisture in many ecosystems (Seager et al. 2007). Determin-
ing the ecological consequences of interactions between a
slow increase in mean temperature and amplified variance in
precipitation is thus an important research frontier (Lawson
et al. 2015, Vazquez et al. 2016).
Understanding the climatic controls governing NPP within

ecosystems is fundamentally important because of the measur-
able impact of production on the global carbon cycle (Seddon
et al. 2016). However, while strong spatial relationships
between mean annual precipitation and NPP have been
widely documented across ecosystems globally (Sala et al.
1988, Huxman et al. 2004), identifying similarly strong tem-
poral relationships between climate and production within
single ecosystems has remained elusive (La Pierre et al. 2011,
Reichmann et al. 2013). While recent efforts to narrow the
time window of the climate-productivity relationship (Barnes
et al. 2016, La Pierre et al. 2016) or include time lags via

antecedent precipitation (Ogle et al. 2015) have improved
predictability, temporal relationships typically remain weaker
than spatial ones (Sala et al. 2012). Accelerating our under-
standing of the influence of climate variance has potential to
improve this predictability.
Here, we propose a framework to capture ecological

responsiveness to both the mean and variance in climate
indices. A climate sensitivity function depicts the complex
relationship between an ecological response (e.g., NPP) and
its climate driver (e.g., precipitation; Fig. 1). Importantly, this
function captures the potential for nonlinear responses to cli-
mate (see also Hsu and Adler 2014, Yu et al. 2016), which
may be common (Knapp et al. 2017), and it departs from the
traditional method of characterizing sensitivity as the magni-
tude of a linear relationship (Munson 2013). When a climate
sensitivity function is nonlinear, then changes in the variance
of a climate index can drive the long-term ecological out-
come, even if mean climate does not change (Gherardi and
Sala 2015)—the mathematical principle of Jensen’s Inequal-
ity. A monotonically increasing concave function (Fig. 1A)
yields net negative effects of increasing variance, because low
values of the climate variable (low rainfall) cause large
decreases in the ecological response, while high values of the
climate variable (high rainfall) cause only small increases. In
contrast, a monotonically increasing convex function signals
net positive effects of variance (Fig. 1B), where gains during
high rainfall years strongly outweigh costs in dry years. If the
function changes concavity over a range of climate (Fig. 1C),
then climate variance could have positive or negative effects
depending on the climate mean, because the climate mean
and variance interact. For example, increasing variance may
exacerbate declines in NPP during drought periods (concave,
Fig. 1C), but then become net beneficial during wet periods
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(convex, Fig. 1C). The degree of nonlinearity will define, in
part, the magnitude of the effect of variance on productivity.
Observing nonlinear climate sensitivity functions within an
ecosystem requires long time series over naturally or experi-
mentally variable climates (Vazquez et al. 2016). Yet, most
studies examine only linear relationships.
Climate sensitivity functions may be especially important

for understanding ecotone dynamics, where ecosystems can
rapidly expand or contract under directional change in abiotic
drivers (Peters and Havstad 2006). Climate variance could
have large effects on NPP at ecotones if dominant plants
reach physiological limits that generate nonlinearities, such as
threshold effects. Prior work applied the same nonlinear func-
tion across ecosystem types (Hsu and Adler 2014), although
recently, Yu et al. (2016) showed that tree versus grass-
dominated ecosystems in the Kalahari Desert had different
relationships with interannual variance in precipitation.
Here, we used long-term data collected at the confluence of

three dryland ecosystems to develop climate sensitivity func-
tions that predict how changes in both climate mean and

variance will interact to control NPP. Drylands provide an
excellent test bed to advance general theory on the ecological
responsiveness of NPP to non-stationary climate because they
are highly ecologically variable and typically more sensitive to
climate than mesic ecosystems (Knapp and Smith 2001,
Huxman et al. 2004). In addition, future climates in drylands
are expected to have greater interannual variance in precipita-
tion (Gutzler and Robbins 2011, Cook et al. 2015) and may
experience >40% greater warming than mesic ecosystems
(Huang et al. 2017). Assessing the consequences of these dual
changes is essential because drylands are key contributors to
global carbon fluxes due to their high year-to-year variability
in NPP (Ahlstrom et al. 2015) and large terrestrial surface area
(~45%), which is rapidly expanding (Huang et al. 2016). We
asked if ecosystem-specific differences in climate sensitivity
functions corresponded with observed transitions among
ecosystems under a changing climate. Our analysis suggests,
for the first time, that rising temperatures in drylands could
alter the nonlinearities that determine the relative costs/benefits
of precipitation variance for net primary production.

METHODS: APPLICATION OF CLIMATE SENSITIVITY FUNCTIONS

TO DRYLAND BIOME TRANSITION ZONES

Study site

We developed climate sensitivity functions (CSFs) to
explore how aboveground NPP correlated with changes in cli-
mate mean and variance across a grassland to shrubland state
transition currently playing out in the southwestern US. The
Sevilleta National Wildlife Refuge (SNWR), New Mexico, sits
at the transition zone between Chihuahuan Desert vegetation
to the south and west, and Great Plains grassland to the north
and east. Sites in the SNWR are located at endpoints between
two broad ecotones, one from blue grama (Bouteloua gracilis)-
dominated shortgrass steppe (Great Plains grassland) to black
grama (B. eriopoda)-dominated Chihuahuan Desert grass-
land. The second ecotone shifts from Chihuahuan Desert
grassland to creosotebush (Larrea tridentata)-dominated Chi-
huahuan Desert shrubland (Appendix S1: Fig. S1). Although
historically, Chihuahuan Desert shrubland has replaced desert
grassland throughout much of the southwestern US (Van
Auken 2000), the current ecotone between these systems at the
SNWR has been stable for the past two decades (S. L. Collins,
unpublished data). In contrast, at the grassland ecotone, the
competitively inferior black grama (Peters and Yao 2012,
Chung and Rudgers 2016) is, enigmatically, replacing its more
competitive congener, blue grama (Collins and Xia 2015).
We hypothesized that black grama-dominated Chihuahuan

Desert grassland benefits from a combination of high vari-
ance in precipitation and hot summer temperatures (convex
CSF at high aridity, Fig. 1) relative to blue grama-dominated
Great Plains grassland, potentially enabling current expan-
sion of desert grassland. We examined if these combined cli-
mate drivers could also explain recent resistance of desert
grassland to encroachment by creosotebush shrubs.

Plants

To test these hypotheses, we analyzed long-term NPP data
from Chihuahuan Desert grassland, shrubland (since 1999),

FIG. 1. Types of nonlinear Climate Sensitivity Functions
(CSFs). Nonlinear relationships between a climate driver and an
ecological response result in asymmetric responses to yearly varia-
tion in climate. The ecological response at the mean climate value is
indicated with a diamond symbol. For concave functions (A), years
that deviate from the mean climate produce larger decreases in the
ecological response than increases: increasing climate variance is
costly. For convex functions (B), deviations from mean climate pro-
duce larger increases than decreases in the ecological response:
increasing climate variance is beneficial. A complex CSF (C)
demonstrates how the nonlinear ecological response to the climate
driver can depend on the value of the mean climate driver, with the
large, blue arrow indicating a decrease in the mean over time; this
shape is evidence of a mean 9 variance interaction.
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and Great Plains grassland (since 2002). Vascular plant live
NPP was estimated for each species using a nondestructive
volumetric method (Muldavin et al. 2008) that yields data
on species composition and total production (Appendix S1).
Volume measurements of all individual plants were recorded
at peak biomass (September) each year in permanently
located 1-m2 plots (N ranges from 22 to 106 plots depending
on the year and ecosystem; Appendix S1: Tables S1 and S2).
Biomass was calculated allometrically via linear regression
models with intercepts through the origin; these were devel-
oped for each species over multiple years from plants col-
lected outside of the permanent sampling plots (Muldavin
et al. 2008).

Climate

Precipitation alone does not override the strong effect of
temperature on water availability in dryland ecosystems
(Williams et al. 2013). New metrics like the Standardized
Precipitation Evapotranspiration Index (SPEI) explicitly
incorporate temperature via potential evapotranspiration
(Vicente-Serrano et al. 2010). Negative SPEI values indicate
more arid conditions. We calculated SPEI for the monsoon
season (during which >60% of NPP occurs) using meteorolog-
ical data from the SNWR during 1989–2015. To determine
SPEI, climate variables were recorded at three long-term
meteorological stations located in the Great Plains grassland,
ecotone between Great Plains and Chihuahuan Desert grass-
land, and ecotone between Chihuahuan Desert grassland and
shrubland. Variables included air and soil temperature, soil
moisture, relative humidity, precipitation, solar radiation, and
wind speed and direction. We gap-filled missing daily data
(e.g., temporary equipment failure) using data from the geo-
graphically nearest station within the SNWR. We also
obtained monthly average air temperature and monthly accu-
mulated precipitation from 1900 to 2014 for the Socorro,
NM, USHCN site (298387, cdiac.ornl.gov/epubs/ndp/ushcn/
ushcn.html). We calculated potential evapotranspiration using
the Thornthwaite method, then determined six-month inte-
grated SPEI ending 30 September (<SPEI> package cran.
r-project.org/package=SPEI; RCore Team 2016). Prior analysis
of ecosystem flux data from a related study identified that six-
month integration, which captures the full monsoon period,
explained more variance across ecosystems than three-month
or twelve-month integrations.
We determined temporal trends in aridity using Spearman

rank correlation between year and either six-month SPEI
(30 Sept) or the coefficient of variation (CV) of positivized
SPEI, which was determined over non-overlapping, five-
year time windows (for Socorro) or four-year windows (for
SNWR, to maximize the number of windows).

Climate sensitivity functions

Next, we determined climate sensitivity functions for NPP
on SPEI (Appendix S1: Table S1) via model selection proce-
dures (Burnham and Anderson 2002). Because yearly data
were repeatedly measured in permanent plots, we included the
random effects of both sampling quadrat and year to account
for non-independence of observations. Mixed effects models
were fit via maximum likelihood using lme in package <nlme>

(Pinheiro et al. 2016, RCore Team 2016). We selected the best
model using the AICc criterion and determined marginal and
conditional r2 values using <piecewise SEM> (Lefcheck
2016). Conservatively, we report model averaged coefficients
from the set of models with DAICc < 10 (CRAN.R-project.
org/package=MuMIn; Appendix S1: Table S4). To examine
variability in aridity directly, we split datasets into dry
(SPEI < 0) or wet periods (>0), and examined the relationship
between the mean NPP and CV in SPEI over four-year rolling
windows. Plant data (data sets SEV129, SEV182, control plots
data from SEV155, SEV176, SEV188, SEV231, SEV297) are
available at http://sev.lternet.edu/data. R code and processed
data are freely accessible via Rudgers et al. (2017).

RESULTS

Climate change at the SNWR

Aridity during the summer monsoon has fluctuated con-
siderably since 1900 (Fig. 2), with a significant long-term
decline in average SPEI (r = �0.40, P < 0.0001, N = 115).
In contrast, the coefficient of variation in aridity has
increased (r = 0.69, P = 0.0003, N = 23 5-year windows),
especially since the early 1980s. At the SNWR, mean mon-
soon SPEI has declined since 1989 (r = �0.46, P = 0.0185)
by �0.04 � 0.01 SD per year, and CV in aridity has also
increased, although not significantly (r = 0.38, P = 0.0725,
N = 23 rolling windows).

Climate sensitivity functions (CSFs)

The potential for the mean and variance of climate indices
to influence NPP derives from the specific, nonlinear shape of
ecosystem-specific CSFs. Our investigation revealed new dif-
ferences between two grassland ecosystems that were surpris-
ingly consistent with the observed replacement of Great Plains
grassland by Chihuahuan Desert grassland across this ecotone
during the past 25 yr (Collins and Xia 2015). In Great Plains
grassland, the concave shape of the CSF under dry conditions
(Fig. 3A; Appendix S1: Table S3) signaled a cost of variance
in aridity, which was also supported by a negative relationship
between plant production and the coefficient of variation in

FIG. 2. Temporal trends in the Standardized Precipitation Eva-
poration Index (SPEI). Negative SPEI values indicate dry and hot
conditions for Socorro, NM, about 30 km south of SNWR: Points
show the 6-month integrated SPEI over the preceding monsoon sea-
son, recorded since 1900. Bars show the coefficient of variation
(CV) in the SPEI for non-overlapping 5-yr time windows. The
mean SPEI has significantly declined over time (P < 0.0001, blue
trendline), while the CV in SPEI has significantly increased
(P = 0.0003).
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SPEI (Fig. 3B, b = �888.0, P < 0.0001). In contrast, the shift
to a convex CSF during wet/cool periods at high SPEI sug-
gested possible benefits of variance to NPP, and the CV in
SPEI was positively, but non-significantly, related to NPP
(Fig. 3C, b = 45.3, P = 0.46). Although weaker, the opposite
pattern occurred in Chihuahuan Desert grassland (Fig. 3D;
Appendix S1: Table S3). Here, the convex CSF suggested this
grassland would benefit from variance under aridity, and there
was a positive, but non-significant relationship with CV
(Fig. 3E, b = 10.9, P = 0.89). But, under wetter, cooler condi-
tions, higher CV was significantly negatively related to NPP
(Fig. 3F, b = �315.0, P = 0.0107). Cubic models (Model 6 in

Appendix S1: Table S1) best fit the relationship between NPP
and aridity in both grasslands (Appendix S1: Table S4) and
explained 27-30% of variability in NPP relative to the null
model (marginal r2; Appendix S1: Table S3), although the
quadratic model was still competitive for the Chihuahuan
Desert grassland Appendix S1: Table S4).
In contrast to the grasslands, Chihuahuan Desert shrub-

land, dominated by the long-lived C3 shrub creosotebush,
was insensitive to climate variance during the monsoon
season and lacked significant nonlinearity in the CSF
(Fig. 3G–I; CV all years: b = 0.32, P = 0.57). This insensi-
tivity held whether we used 3, 6, or 12-month integration for

FIG. 3. Climate sensitivity functions for 12–15 yr of aboveground NPP from Great Plains grassland dominated by blue grama (blue
points, A), Chihuahuan Desert grassland dominated by black grama (black points, B), and Chihuahuan Desert shrubland dominated by
creosotebush (green points, C) in the Sevilleta National Wildlife Refuge, New Mexico. Negative SPEI indicates dry and hot conditions.
NPP is also plotted against the coefficient of variation (CV) in SPEI separately for dry periods (SPEI < 0) and wet periods (SPEI > 0) for
each ecosystem (B, C) Great Plains grassland; (E, F) Chihuahuan Desert grassland; (H,I) Chihuahuan Desert shrubland.
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SPEI. While multiple CSF models fit shrubland data equally
well, none explained much variability in NPP (marginal
r2 ~ 0.02), and only the linear relationship with SPEI was
statistically significant (Appendix S1: Tables S3 and S4).
The complex nonlinearities observed for grasslands can be

further explained by decomposing the SPEI aridity index into
its component climate drivers: precipitation and temperature.
Nonlinear sensitivities for plant production occurred because
the influence of monsoon precipitation differed during warm
versus cool summers (Appendix S2). In Great Plains grass-
land, high NPP occurred when summers were cool (maximum
summer temperature < average) and precipitation was high;
in contrast, high summer temperature plus low precipitation
were negatively correlated with NPP (Appendix S3: Tables S1
and S2), corresponding with the hypothesis that high temper-
atures are driving the increasingly concave shape of the CSF
in years with higher values of aridity (Fig. 3A). Thus, variance
in precipitation may be beneficial only under wet/cool condi-
tions in the Great Plains grassland ecosystem (Appendix S3:
Fig. S1B). In contrast, in Chihuahuan Desert grassland, NPP
was lower, on average, in wet years with cool summers than in
wet years with warm summers. In fact, the relationship flipped
from convex under warm summer temperatures, indicating a
net benefit of variance Appendix S3: Fig. S1C), to concave
when cool (Appendix S3: Fig. S1D), corresponding with the
increasingly concave shape of the CSF at high SPEI (Fig. 3B).
Collectively, these results suggest that rising mean tempera-
tures may alter the shape and magnitude of the nonlinearities
that determine the costs/benefits of precipitation variance,
and that the potential for climate mean 9 variance interac-
tions may differ dramatically among types of ecosystems.

DISCUSSION

The majority of studies investigating NPP and climate in
single ecosystems have focused on the strength of linear rela-
tionships with current seasonal or annual climate conditions
(but see, Hsu and Adler 2014, Yu et al. 2016). We derived
non-linear climate sensitivity functions to gain deeper insight
into NPP dynamics at ecosystem transition zones. We found
nonlinearities that indicated the potential for interannual vari-
ation in climate to affect NPP, and for the influence of vari-
ance to interact with average climate conditions. Of the three
ecosystems we examined, the two grasslands had strong non-
linearities with monsoon climate, but the shrubland did not.
In both grasslands, NPP was also significantly correlated with
the coefficient of variation in aridity, consistent with the
importance of variance independently of the mean. The grass-
lands differed in the conditions under which variance was
negatively associated with production. In Great Plains grass-
land, variance appeared most costly during hot summers,
whereas in Chihuahuan Desert grassland, the variance-NPP
relationship was most negative during cool summers. Positive
effects of variance were statistically less detectable than nega-
tive effects, but even sixteen years of data may not be enough
to resolve complex nonlinearities in climate sensitivities.
Our results also suggest that new aridity indices can yield

insights into future changes in both climate (Fig. 2) and
NPP (Fig. 3). As noted by Cook et al. (2015) future climate
in the Southwestern and Central U.S. will be driven by
changes in both precipitation and temperature. Our analysis

of SPEI indicated a larger change in aridity (Fig. 2) than
analysis of monsoon precipitation alone, which has not sig-
nificantly declined since 1900 (Petrie et al. 2014). Although
it has garnered the lion’s share of attention in the dryland
literature, precipitation alone cannot account for the effects
of rising temperature, which exacerbate aridity.

New explanations for ongoing ecosystem
transitions in drylands

Recent changes in the mean and variance of aridity (Fig. 2)
may help explain two ongoing transitions across the northern
Chihuahuan Desert to Great Plains ecotone. The first is the
expansion of Chihuahuan Desert grassland relative to Great
Plains grassland (Collins and Xia 2015). Our detection of
nonlinearities (Fig. 3) suggested that increased interannual
CV in climate under a changing mean may be an overlooked,
but important driver of the Great Plains to Chihuahuan
Desert grassland transition. Under arid conditions, Chi-
huahuan Desert grassland was insensitive or slightly benefited
from increased CV (Fig. 3B). In contrast, conditions that
were both more arid and more variable were associated with
reduced NPP in the Great Plains grassland (Fig. 3A). Thus,
greater temporal variance in climate under a changing mean
climate may explain the grassland ecotone enigma, where the
competitively inferior black grama (Peters and Yao 2012,
Chung and Rudgers 2016) appears to be replacing its more
competitive congener, blue grama (Collins and Xia 2015).
Like the replacement of Great Plains grassland by Chi-

huahuan Desert grassland, shrub encroachment by creosote-
bush into desert grassland is also an ecological conundrum.
Although historically Chihuahuan Desert shrubland has
replaced desert grassland throughout much of the southwest-
ern US (Van Auken 2000), the current ecotone at the SNWR
has been stable over the past two decades (S. L. Collins, unpub-
lished data). Desert shrubland was insensitive to year-to-year
variance in aridity (Fig. 3G–I), and sensitivity did not increase
when we integrated climate over the full year, suggesting that
we did not miss a signal from winter precipitation. This result
is consistent with prior work that identified monsoon precipi-
tation as a key driver of creosotebush growth (Sponseller et al.
2012). In contrast, Chihuahuan Desert grassland may benefit
the most from CV in aridity when average conditions are arid
(Fig. 3B), as in the current climate window (Fig. 2). Thus, sta-
bility of the grassland/shrubland ecotone may be a logical out-
come of historically arid and variable climatic conditions over
the past two decades (Fig. 2). Our results also suggest that
shrub encroachment will likely not be reversed by ongoing
changes in climate mean and variance, assuming these vari-
ables continue on their current trajectories (Fig. 2).

Mechanisms of climate sensitivity functions

Understanding mechanisms underlying the shape of cli-
mate sensitivity functions could expand the ability to general-
ize patterns to other ecosystems, worldwide. Species traits
could be key to this understanding (reviewed by Lawson
et al. 2015). For example, Knapp and Smith (2001) attributed
the differential responsiveness of NPP to precipitation to
traits such as physiological plasticity and meristem density.
Shallow rooting depth could cause a saturating downward
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CSF because plants cannot make large gains in biomass fol-
lowing the large rains that infiltrate deep soils (Gherardi and
Sala 2015). Dominance by several drought-tolerant plant spe-
cies could reduce the concavity of an ecosystem’s climate sen-
sitivity function. Differences among ecosystems in edaphic
factors or other non-climate abiotic variables could also influ-
ence the shape of the climate sensitivity function.
At the SNWR, ecosystem responses to changes in climate

mean and variance may be linked to key differences in traits
among the three dominant species. Black grama is a short-
lived (~40 yr), shallow-rooted C4 grass that can spread rapidly
via stolons and occasionally by seeds (Peters and Yao 2012).
Its congener, blue grama, is a shallow rooted, caespitose C4

bunchgrass that may live for more than a century (Gibbens
and Lenz 2001). Blue grama seedlings are rare at the SNWR
(Peters 2000), and this species spreads primarily by basal tiller-
ing (Ravi et al. 2008). Because of these trait differences, black
grama may have greater capacity than blue grama to benefit
from average years (when SPEI ~ 0) via recruitment and rapid
clonal growth, potentially shaping its convex response under
high aridity (Fig. 3B). Blue grama, on the other hand, may
have limited capacity to benefit from wet years under hot con-
ditions (Fig. 3A; Appendix S3: Fig. S1A), causing biomass to
decline as both precipitation variance and temperature
increase. Creosotebush is a highly drought resistant (Smith
et al. 1997), very long-lived, semi-evergreen, native C3 shrub
that has greatly expanded its regional range during the past
150 yr (Van Auken 2000). Although adult creosotebush are
more drought tolerant than black grama (Baez et al. 2013),
Pockman and Small (2010) showed that black grama achieved
higher leaf-level carbon fixation after moderately sized rain
events than did co-occurring creosotebush, indicating that
black grama competes better for shallow soil water. Abundant
fibrous roots, stoloniferous growth, and seed reproduction
should give black grama a competitive advantage over cre-
osotebush because all but the largest rain events increase water
in shallow soil, where grass roots dominate over shrub roots
(Pockman and Small 2010). The insensitivity of creosotebush
to variance in aridity (Fig. 3H) may occur because it can
respond equally well to both winter/spring and summer pre-
cipitation events (Allen et al. 2008, Sponseller et al. 2012).
NPP-climate relationships under monsoon conditions could
be additionally influenced by changes in the ratio of winter/
spring/monsoon precipitation, which were not captured by our
monsoon SPEI metric, and likely deserve future investigation.

CONCLUSION

Understanding contemporary relationships between cli-
mate and NPP remains an important objective if we are to
accurately predict how ecosystems will respond to climate in
the future. Our results support the contention by Knapp
et al. (2017) that NPP is more likely to exhibit a nonlinear
rather than linear response within a site over time. We argue,
however, against a “one size fits all” approach to fitting the
climate-NPP relationship, linear or otherwise. Our results
indicate that ecological responses to changes in climate mean
and variability will be an ecosystem-specific function, possi-
bly driven by a combination of plant traits and species rela-
tive abundance. Thus, we propose that climate sensitivity
functions that integrate changes in mean and variance of

integrative climatic indices (such as SPEI) can provide mech-
anistic insights and predictive capability to forecast ecosystem
dynamics under future climate change.
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