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Significance

Numerous empirical analyses have 
revealed how net primary 
production responds to climate 
change and variability over time. 
However, linear approaches 
predominantly used in previous 
studies often generate a weak 
relationship between climate 
factors and productivity, which 
greatly limits our understanding of 
the mechanism associated with 
this fundamental ecological 
process. We demonstrated 
dryland sensitivity to climate 
change and variability by 
incorporating nonlinear dynamics. 
Dryland sensitivity patterns 
revealed in this study are largely 
unrecognized and partly 
counterintuitive; however, the 
underlying mechanisms are 
inferable and cannot be fully 
revealed by linear approaches. 
Our work highlights the 
importance of nonlinear, state-
dependent sensitivity of 
productivity to climate change and 
variability, accurately forecasting 
potential biosphere feedback to 
the climate system.
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Primary productivity response to climatic drivers varies temporally, indicating 
state-dependent interactions between climate and productivity. Previous studies pri-
marily employed equation-based approaches to clarify this relationship, ignoring the 
state-dependent nature of ecological dynamics. Here, using 40 y of climate and produc-
tivity data from 48 grassland sites across Mongolia, we applied an equation-free, nonlin-
ear time-series analysis to reveal sensitivity patterns of productivity to climate change and 
variability and clarify underlying mechanisms. We showed that productivity responded 
positively to annual precipitation in mesic regions but negatively in arid regions, with 
the opposite pattern observed for annual mean temperature. Furthermore, productivity 
responded negatively to decreasing annual aridity that integrated precipitation and tem-
perature across Mongolia. Productivity responded negatively to interannual variability 
in precipitation and aridity in mesic regions but positively in arid regions. Overall, 
interannual temperature variability enhanced productivity. These response patterns are 
largely unrecognized; however, two mechanisms are inferable. First, time-delayed climate 
effects modify annual productivity responses to annual climate conditions. Notably, our 
results suggest that the sensitivity of annual productivity to increasing annual precipita-
tion and decreasing annual aridity can even be negative when the negative time-delayed 
effects of annual precipitation and aridity on productivity prevail across time. Second, 
the proportion of plant species resistant to water and temperature stresses at a site 
determines the sensitivity of productivity to climate variability. Thus, we highlight the 
importance of nonlinear, state-dependent sensitivity of productivity to climate change 
and variability, accurately forecasting potential biosphere feedback to the climate system.

aridification | climate extreme | convergent cross-mapping | drought legacy |  
empirical dynamic modeling

Climate warming, precipitation changes, and increasing aridity are major facets of con-
temporary and future climate change across terrestrial ecosystems (1–4), particularly in 
drylands that cover ~45% of Earth’s land surface and support >2 billion people (5). 
Ongoing climate change has led to increasing climate variability via increased frequency 
of extreme climatic events, such as droughts and heat waves (1, 2, 6). Empirical studies 
have primarily used linear or occasionally nonlinear equation–based approaches to 
long-term (>10 y) observational data (7–11) to determine how climate change and vari-
ability affect plant primary productivity (hereafter, productivity), which is a key ecosystem 
process regulating the global carbon cycle (12). In recent years, abrupt changes in plant 
productivity driven by increasing aridity across space (13) and time (14) in drylands have 
been more common, highlighting dryland vulnerability to future aridification (2, 3). Some 
of these studies have further quantified the sensitivity of productivity to climate change 
and variability at large spatial scales to forecast potential biosphere feedback to the climate 
system (7, 9–11). Nevertheless, such quantifications have largely relied on a linear approach 
wherein the linear regression slope of productivity against climate variables was used to 
represent sensitivity (8–11). Furthermore, most precipitation–productivity relationships 
at any given site are weak and account for a relatively small percentage of variation over 
time (15). However, because natural systems are often complex and dynamic (16, 17), 
alternative approaches are needed to determine the relationship between productivity and 
climate at a site over time. Herein, we used an equation-free, data-driven approach incor-
porating complex nonlinear dynamics (16, 18) to reveal how productivity responds to 
variability in precipitation, temperature, and aridity over 40 y at 48 sites across Mongolia. 
Such spatial and temporal information is widely lacking; hence, it is crucial to improve 
forecasts of dryland sensitivity to future climate change.

The effects of climatic drivers on productivity fluctuate over time (8, 19, 20); therefore, 
system behavior is state-dependent (i.e., nonlinear). State dependency is a defining hall-
mark of complex nonlinear systems, where the relationships among interacting variables 
vary in time according to different states of the dynamical system (16, 17, 21). For example, D
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increasing precipitation can increase productivity during some 
years but decrease productivity during other years because of var-
ying system states and depending on the state of a third variable, 
such as temperature (19, 22). Consequently, “mirage correlations” 
are common in long time-series data, wherein linear correlations 
between variables can appear and disappear or even change sign 
across time (16, 17, 23) (SI Appendix, Fig. S1 A–D). This may 
lead to the previous notion that productivity is less sensitive to 
climate variations at a site over time, compared with across sites 
along a mean annual precipitation (MAP) gradient (24, 25). In 
addition, previous studies often reported a considerably weaker 
or nonsignificant temporal linear relationship between productiv-
ity and temperature, compared with that between productivity 
and precipitation (10, 26), emphasizing the primary role of pre-
cipitation in driving annual changes in productivity. Notably, 
however, even the absence of a linear correlation (SI Appendix, 
Fig. S1D) does not imply lack of causal effects of climatic drivers 
other than precipitation on productivity (16). Such nonlinear 
dynamic properties of a system cannot be described by predefined 
linear or nonlinear equations (16, 17), that is, nonlinearity in this 
case is not defined by asking whether the underlying equations 
are linear or nonlinear (17). Statistical power to test the effects 
and relative importance of precipitation and temperature as well 
as changes in their interannual variabilities on productivity over 
time is thus limited by previous linear or nonlinear parametric 
approaches.

A critical step to account for the state dependency of nonlinear 
dynamic systems is to perform more accurate forecasting of dry-
land sensitivity to climate change and variability. Empirical evi-
dence has shown that annual productivity responds positively to 
increasing annual precipitation and decreasing aridity and that 
the magnitude in such responses increases in more arid regions 
(7, 8, 10). Yet, increasing annual precipitation and decreasing 
aridity do not necessarily enhance annual productivity according 
to varying system states. In drylands, the state dependency of the 
system can also arise from the time-delayed effects of annual 

variation in precipitation and aridity on primary production, 
which are referred to as legacy effects (11, 15, 27). Anomalous dry 
years can have negative effects on productivity following drought 
(15, 27), and a subsequent wet year after a dry year may not 
necessarily increase productivity as expected (SI Appendix, 
Fig. S1E). When negative legacy effects of precipitation on pro-
ductivity prevail across time, the sensitivity of annual productivity 
to annual precipitation can sometimes be negative. The effects of 
increasing annual mean temperature on annual productivity could 
be positive or negative, depending on the vegetation response to 
warming-induced changes in water availability and lengthening 
of the growing season (19, 22, 26, 28). A regional ecosystem 
model in drylands predicted that an extended growing season 
because of warming can increase productivity despite increasing 
aridity (22). In contrast, some studies reported that warming 
effects on productivity can be negative in grasslands dominated 
by C3 species, which are generally less resistant to temperature 
and water stresses than grasslands dominated by C4 species 
(26, 29). Although empirical evidence is limited (7, 9, 11), the 
overall effects of interannual climatic variability on mean produc-
tivity over a certain period will depend on the relative magnitude 
of positive and negative ecosystem responses (including immediate 
and delayed responses) to annual climate conditions (11). Previous 
studies suggested positive effects of interannual precipitation var-
iability in drylands with <300 mm MAP (9, 11), but this may 
need to be revisited after incorporating nonlinear dynamics.

We applied empirical dynamic modeling (EDM) (16, 18), an 
equation-free, data-driven approach to aboveground net primary 
productivity (ANPP) and climate data from over 40 y (1978 to 
2017) at 48 grassland sites (i.e., ~1,920 records of ANPP and 
climate) that cover extensive gradients in the long-term MAP and 
mean annual temperature (MAT) across Mongolia (Fig. 1 A and 
B and SI Appendix, Fig. S2 and Table S1). Such long-term 
ground-based data enable a direct coupling of climate and pro-
ductivity and should be suitable for the quantification of nonlinear 
dynamics in drylands. First, we examined the overall effects and 

Fig. 1. Geographic patterns of climate and the strength of the causal effects of climate variables on aboveground net primary productivity (ANPP) across 48 
meteorological sites in Mongolia. (A) Long-term (1978 to 2017) MAP and (B) MAT across sites (indicated by black circles). Geographic patterns in MAP and MAT 
were visualized using spatial interpolation via ordinary kriging. (C and D) The cross-map skill ρ (indicating the causal strength) for observed ANPP predicting climate 
variables with maximum time-series length at each site was shown as joint violin and box plots to present the kernel probability density of the values and the 
interquartile range and median of the values. (C) The causal strength of annual precipitation, annual temperature, summer temperature, and SPEI on ANPP. (D) 
The causal strength of interannual precipitation variability, interannual temperature variability, interannual summer temperature variability, and interannual 
SPEI variability on mean ANPP in 6-y moving windows. Interannual variabilities of precipitation, temperature, summer temperature, and SPEI were calculated 
as the coefficient of variation of annual precipitation, and SDs of annual mean temperature, summer mean temperature and annual SPEI, respectively. Cross-
mapping significance was determined by comparing ρ with the maximum time-series length as well as convergence (a difference between ρ at the maximum and 
minimum time-series lengths) between original and surrogate time-series data (we used 1,000 surrogate time-series data obtained by randomizing the phases of 
a Fourier transform of climate variables; refer to Materials and Methods for details). The P-value was estimated for each site as the number of surrogates showing 
a higher ρ with the maximum time-series length as well as a higher convergence, divided by the total number of surrogates. The metasignificance (meta P-value 
below each violin plot) was then calculated using a recently proposed method to combine the P-values [harmonic mean P-values (28)]. Different letters above 
violin plots indicate significant differences in the causal strength among climate variables by paired Wilcoxon tests (P < 0.05).D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 M
E

X
IC

O
 Z

IM
M

E
R

M
A

N
 L

IB
R

A
R

Y
 o

n 
A

ug
us

t 2
9,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
64

.1
06

.1
11

.9
8.

http://www.pnas.org/lookup/doi/10.1073/pnas.2305050120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305050120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305050120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305050120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305050120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305050120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2305050120#supplementary-materials


PNAS  2023  Vol. 120  No. 35  e2305050120� https://doi.org/10.1073/pnas.2305050120   3 of 9

relative importance of annual precipitation, annual mean temper-
ature, summer mean temperature, and annual aridity for the water 
year (September–August), as well as their interannual variabilities 
on productivity. Second, we compared an EDM approach with a 
linear approach in quantifying the sensitivity of productivity to 
climate change and variability across sites.

We hypothesized that negative legacy effects of annual precip-
itation on productivity would prevail across time under high 
interannual precipitation variability in the drier southern half of 
Mongolia (15). We expected that the increasing proportion of 
annual species that survived the dry period as seeds in drier grass-
lands (30, 31) would explain the predominance of negative effects 
of drought legacy. In contrast, positive legacy effects of annual 
precipitation would be common, and/or the magnitude of positive 
effects of precipitation would be immediate and relatively large 
in the wetter northern half of Mongolia (11, 15). This might result 
in a shift from positive to negative in the sensitivity of productivity 
to increasing annual precipitation and decreasing annual aridity 
along climatic gradients (Fig. 1 A and B) in Mongolia. We 
expected an opposite pattern in the sensitivity of productivity to 
increasing annual temperature. Indeed, experimental evidence 
from northern Mongolian grasslands (32, 33) suggested that veg-
etation in cold environments would generally have low resistance 
to warming-induced soil water deficiency, and productivity would 
thus respond negatively to increasing temperature. Given that the 
proportion of C4 species that have higher resistance to water stress 
than C3 species increased with aridity in Mongolia (34), the neg-
ative effects of increasing temperature might be limited in south-
ern Mongolian grasslands. Productivity sensitivity to interannual 
climatic variability would also reflect shifts in the dominance of 
drought resistance (26, 29) and avoidance (30, 31, 35) traits in 
vegetation along the north–south climatic gradient in Mongolia 
(34). We expected that the balance between productivity gain 
caused by positive climate extremes and loss caused by negative 
climate extremes would change depending on vegetation gradients 
across Mongolia, which may lead to contrasting patterns in the 
sensitivity of productivity to interannual climate variability (9, 
11). Using the EDM approach, we detected geographic patterns 
in the sensitivity of productivity to climate across Mongolia and 
identified potential mechanisms underlying ecosystem sensitivity 
to year-to-year variability in climate.

Results and Discussion

We used convergent cross-mapping (CCM) (16), an EDM 
method for detecting causality in nonlinear dynamic systems, to 
examine the degree to which precipitation, temperature, and arid-
ity, and their variabilities, forced ANPP across the 48 sites. The 
basic idea of this method is that if a candidate effect, variable Y, 
can predict the current or previous state of a candidate cause, 
variable X, then X causally influences Y. The cross-map skill was 
evaluated using Pearson’s correlation coefficient (ρ) between the 
cross-map estimates and observations. Note that the values of the 
selected best θ (the tuning parameter indicating nonlinearity of 
the dynamical system) in the S-maps were >0 in most cases of our 
CCMs (SI Appendix, Table S3), indicating that grassland produc-
tivity generally displayed nonlinear dynamics across the study area 
(17, 18).

Annual precipitation, annual mean temperature, summer mean 
temperature, and annual aridity [quantified as a 12-mo integrated 
standardized precipitation evapotranspiration index; SPEI (36)] 
showed significant causal forcing across Mongolia (Fig. 1C and 
SI Appendix, Table S4). The results were metasignificant for all 
climate variables, as determined using a recently proposed method 

to combine the P-values [harmonic mean P-values (37)]. The 
strength of the causal effect of annual mean temperature on ANPP 
was less, on average, than that of annual precipitation, summer 
mean temperature, and SPEI (Fig. 1C). There were no significant 
differences between the strengths of the causal effects of annual 
precipitation, summer mean temperature, and SPEI on ANPP. 
Previous studies reported a considerably weaker effect of temper-
ature on productivity than precipitation in drylands (10, 24), 
probably because of the state-dependent behavior of drylands 
across time. However, our analysis incorporated the state depend-
ency highlights the importance of summer mean temperature as 
well as that of annual precipitation and aridity in driving annual 
ANPP. At most sites, climate variables affected ANPP with a time 
delay of 1 to 3 y (SI Appendix, Table S4).

All interannual climate variabilities causally influenced mean 
ANPP in a 6-y moving window across Mongolia (Fig. 1D). Inter
annual variabilities in precipitation, temperature, summer temper-
ature, and SPEI were calculated as the coefficient of variation of 
annual precipitation, and SDs of annual mean temperature, sum-
mer mean temperature, and annual SPEI, respectively. The results 
were metasignificant based on the harmonic mean P-values. In this 
case, the strength of the causal effects of interannual variability in 
temperature and summer temperature on ANPP was stronger, on 
average, than that of interannual variations in precipitation and 
SPEI on ANPP (Fig. 1D), which were not significantly different. 
At most sites, climate variability affected mean ANPP with a delay 
of 1 to 3 moving windows (SI Appendix, Table S5). These results 
were robust because they were qualitatively similar to the results 
observed with 5- or 4-y moving window (SI Appendix, Fig. S5 and 
Tables S6 and S7).

The considerable, but until now underappreciated, importance 
of temperature and its interannual variability in driving dryland 
productivity are particularly notable given that the future increase 
in aridity will be driven by a steady increase in global surface 
temperature in response to elevated atmospheric CO2 levels 
(2, 3, 38). Our observational records indicated increasing aridity 
over time because of continued warming (SI Appendix, Fig. S3 B, 
C, and E). We also observed increases in interannual variabilities 
in temperature and aridity (SI Appendix, Fig. S3 G and H). Plant 
growth in cold climates across Mongolia (SI Appendix, Table S1) 
can be stimulated in warmer years by an extended growing season 
(22, 39, 40) (as suggested by increases in summer mean temper-
ature and growing degree days over time; SI Appendix, Fig. S3 C 
and D) and by ameliorated water availability in wetter years (41). 
Taken together, our study provided general evidence that grassland 
productivity was significantly driven by both precipitation and 
temperature at annual and interannual time scales.

Next, we assessed the sensitivity of ANPP to climate and its 
variability at each site using scenario exploration analysis with 
multivariate EDM (17, 42, 43). For each historical time point 
(i.e., a year or moving window), we predicted hypothetical changes 
in ANPP (ΔANPP) with small perturbations (ΔZ) in climate 
variables or their variabilities. A higher positive ΔANPP/ΔZ value 
suggested a more sensitive positive causal effect of climatic drivers 
and vice versa. The calculated values at each historical time point 
were averaged across the time series to determine the system-level 
sensitivity of ANPP over the observation period.

We detected a clear geographic pattern in the predicted map using 
kriging (Fig. 2A), showing a positive effect of annual precipitation on 
ANPP in the northern half and negative effect in the southern half 
of Mongolia. The sensitivity of ANPP to changes in annual precipi-
tation was significantly positively related to long-term MAP and 
negatively related to long-term MAT at each site (SI Appendix, Fig. S6 
A and B). The negative effect of precipitation on productivity could D
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be attributed to the time-delayed effects of precipitation on produc-
tivity (11, 15, 27), which are negative after a dry year or positive after 
a wet year (11, 15). Indeed, we generally detected time-delayed effects 
ranging from 1 to 3 y across the study area (SI Appendix, Table S4). 
Negative time-delayed effects are more intense and dominant over 
the observation period in the highly arid southern half of Mongolia. 
We observed an increase in the proportion of annual species that are 
capable of surviving drought as seeds (30, 31) as long-term MAP 
decreased and the MAT increased across Mongolia (SI Appendix, 
Fig. S4 E and F). This explains the predominance of negative 
time-delayed effects of annual precipitation in the southern half of 
Mongolia. Conversely, positive time-delayed effects are more com-
mon, and/or the magnitude of positive effects is more immediate and 
greater in the northern half of Mongolia.

In contrast, ANPP responded negatively to annual mean tem-
perature in the north-eastern part and positively in the rest of 
Mongolia (Fig. 2B). Although the pattern in the sensitivity of 
ANPP to summer mean temperature slightly differed from that 
to annual mean temperature (Fig. 2C), we observed a positive 
relationship between the sensitivity of ANPP to summer mean 
temperature and long-term MAT at each site (SI Appendix, 
Fig. S6F). Both results highlight the contrasting responses of 
ANPP to temperature between warmer and colder regions in 
Mongolia. Plant growth in cold climates across Mongolia 
(SI Appendix, Table S1) can be stimulated by lengthening the 
growing season in warmer years (22, 39). However, the total 
response of productivity to changes in temperature depends on 
the degree to which the extended growing season interacts with 

Fig. 2. Maps of the sensitivity of aboveground net primary productivity (ANPP) to changes in annual precipitation, annual mean temperature, summer mean 
temperature, and annual SPEI. The system-level sensitivity of ANPP was interpolated among 48 sites via ordinary kriging. (A‒D) Maps of the sensitivity of ANPP 
to each climate variable evaluated using scenario exploration analysis (i.e., a nonlinear approach). (E‒H) Maps of the sensitivity of ANPP to each climate variable 
evaluated using a GLS regression (i.e., a linear approach).
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warming-induced stress (22, 26, 29). In north-eastern Mongolia, 
vegetation exposed to colder temperatures and increased precipi-
tation may generally have low resistance to soil water deficiency 
caused by warming-induced evapotranspiration. This creates 
drought stress in warmer years (29, 32, 33), resulting in the neg-
ative response of productivity to increasing temperature. In con-
trast, the arid and warmer grasslands in Mongolia are more 
frequently exposed to drought stress and are dominated by vege-
tation that is resistant to such harsh climate conditions (26, 29). 
Therefore, we propose that the negative effects of increasing tem-
perature are limited in these arid and warmer grasslands. We 
observed that the proportion of C4 species that generally have 
higher resistance to warming-induced drought stress (29, 44, 45) 
increased along the climatic gradients in Mongolia (SI Appendix, 
Fig. S4 A and B), which was consistent with a previous report 
(34) that supports these arguments. Currently, there are large 
uncertainties on the effects of increasing temperature on pro-
ductivity, which can be attributed to limitations associated with 
the number of experiments (41, 46), long-term observations 
(47), and models (22). Our study provides long-term, large-scale 
empirical assessments of productivity sensitivity to temperature 
changes in drylands.

Generally, an increase in SPEI (i.e., decreasing aridity), an index 
that integrates precipitation and temperature, negatively affected 
ANPP across Mongolia (Fig. 2D). Although the overall negative 
effect of SPEI on productivity is counterintuitive, given the 
well-known positive relationship between decreased aridity and 
productivity in drylands (8, 10, 22, 23), we propose that the 
vegetation across Mongolian grasslands is governed by negative 
time-delayed effects (i.e., drought legacy) (11, 15) of aridity. In 
addition, the magnitude of negative effects of SPEI on productiv-
ity varied spatially, suggesting that the strength of time-delayed 
effects differed with areas. We thus suggest that the amelioration 
of soil water deficiency resulting from the balance between pre-
cipitation and temperature in a given year does not necessarily 
enhance annual productivity.

The sensitivity of ANPP to interannual precipitation variability 
exhibited a clear geographic pattern, going from negative in the 
north-eastern part to positive in the other regions of Mongolia 
(Fig. 3A). We observed a slightly decreasing trend in the sensitivity 
of ANPP to interannual SPEI variability along the site precipita-
tion gradient (SI Appendix, Fig. S7G). Sensitivity of ANPP to 
interannual SPEI variability demonstrated a clear geographic pat-
tern similar to that of interannual precipitation variability 
(Fig. 3D). Previous studies suggested that the response of produc-
tivity to interannual precipitation variability switches from nega-
tive to positive at a long-term MAP of ~300 mm, with more 
positive responses at drier sites (9, 11). Even below this threshold 
(most of our sites received < 300 mm; SI Appendix, Table S1), 
ecosystem sensitivity to interannual variability in precipitation 
and aridity exhibited a contrasting geographic pattern reflecting 
shifts in dominance of drought resistance (26, 29, 34) and avoid-
ance (30, 31) traits in vegetation along the north–south climatic 
gradient in Mongolia (SI Appendix, Fig. S4). The balance between 
productivity gain caused by positive extremes and loss caused by 
negative extremes would change depending on such vegetation 
shifts, resulting in contrasting patterns of productivity responses 
to interannual variability in precipitation and aridity (9, 11).

We observed an increasing trend in the sensitivity of ANPP to 
interannual temperature variability along the site precipitation 
gradient (SI Appendix, Fig. S7 C and E; however, the trend in the 
sensitivity of ANPP to interannual summer temperature variability 
against long-term MAP was marginal, P = 0.067). The predicted 
map indicated more positive sensitivity of ANPP to interannual 

temperature and summer temperature variability in northern than 
in southern Mongolia (Fig. 3 B and C). Across Mongolia, with 
increasing interannual temperature variability, the magnitude of 
the positive effects in warmer and wetter years caused by a longer 
growing season and improved water availability (39–41) was larger 
than the negative effects in warmer and drier years that constrained 
plant physiological activity (41). Although the degree to which 
the sensitivity of ANPP to climate variability differed slightly, 
depending on the size of the moving window (SI Appendix, 
Figs. S8 and S9), the geographical pattern of the sensitivity of 
ANPP to interannual variability in both temperature and SPEI 
was relatively robust to changes in the size of the moving win-
dow. Nonetheless, uncertainties still remain with regard to eco-
system sensitivity to climate variability in very dry grasslands, 
such as those in Mongolia. Longer time series that include a 
greater number of extreme climatic events are needed to generate 
data-driven confirmation of the effects of climate variability on 
primary production.

Further, we showed large discrepancies (Figs. 2 and 3) between 
predictions of dryland sensitivity to climatic change and variability 
based on our approach (i.e., scenario exploration), compared with 
those based on traditional regression analyses (8, 10, 11). Notably, 
when we used a linear approach, the observed geographic patterns 
of productivity sensitivity to annual climate variations are largely 
in line with well-documented patterns (7, 8, 10). Although the 
CCM for the causal effect of annual precipitation on ANPP did 
not perform better than a simple linear model, our CCMs gener-
ally performed better than simple linear models based on predic-
tion accuracy in most cases (SI Appendix, Tables S4‒S7). However, 
because ANPP essentially displayed nonlinear dynamics across 
Mongolia (SI Appendix, Table S3), a linear approach is in principle 
ill-posed, and a significant linear correlation does not imply causa-
tion. Indeed, the detection of significant causal effects of climate 
variables on ANPP did not necessarily match with the significance 
detected by the linear models (SI Appendix, Tables S4‒S7). This 
highlights the need to fully capture the nonlinear, state-dependent 
sensitivity of productivity to climate change and variability across 
time (21, 43, 48) when quantifying system-level sensitivity. We 
thus demonstrated dryland sensitivity to climate change (Fig. 2 
A–D) and variability (Fig. 3 A–D) using an EDM framework (16, 
18) that acknowledges the complex nonlinear dynamics of eco-
logical systems. Generally, dryland productivity often displays 
state-dependent behavior, as presented in SI Appendix, Table S3, 
thus making inferences regarding dryland sensitivity to climate 
change and variability from linear models, in particular, more 
challenging.

Using an equation-free, nonlinear time-series analyses (16) and 
the most extensive (48 sites) field-based data of climate and pro-
ductivity collected over the longest period (over 40 y) to date, our 
study provided findings on dryland sensitivity to climate change 
and variability. Although dryland sensitivity patterns that we found 
are largely unrecognized and partly counterintuitive, at least two 
underlying mechanisms are inferable. First, a time-delayed climate 
effect modifies the responses of annual productivity to annual cli-
mate conditions. Second, the proportion of plant species resistant 
to water and temperature stresses at a given site determines pro-
ductivity sensitivity to variation in climate. Our results also high-
lighted that the effects of climate on vegetation should be evaluated 
across multiple time scales (i.e., annual and interannual time scales) 
by incorporating the potential occurrence of time-delayed effects. 
To fully understand the sensitivity of global drylands to climate 
change and variability using an EDM approach, there is a need 
for prolonged long time-series data (16, 17) spanning across the 
globe; therefore, more extensive analysis is warranted in future D
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studies. In particular, it is necessary to clarify whether the 
state-dependent, nonlinear responses of productivity to climate 
change and variability are specific to cold and water-limited dry-
lands, such as Mongolia. In addition, global-scale manipulative 
experiments incorporating climatic extremes (49–51) and model 
simulations (9, 22) are required to elucidate the fundamental 
mechanisms underlying the observed patterns in dryland sensitivity 
to climate. Another consideration is the need for an explicit sta-
tistical test on the synergistic causal effects of temperature and 
precipitation on productivity under further methodological devel-
opment, as the CCM permits the identification of causal relation-
ships between two time-series variables (16, 17, 52). Because 

grazing is the dominant land use in drylands and can interact with 
climate to impact ecosystem functioning (53), future studies 
should also evaluate how grazing mediates dryland responses to 
climate change and variability. Given the free-range livestock man-
agement strategy in Mongolia, this approach might be the key to 
effectively address and adapt to challenges associated with climate 
change and variability; however, it requires a holistic understanding 
of the impacts of grazing and climate change on drylands (54, 55). 
Nonetheless, our spatially explicit regional assessment and visual-
ization of how productivity responds to climate change and vari-
ability can be used for validation as well as for important 
improvements incorporating nonlinear vegetation dynamics in 

Fig. 3. Maps of the sensitivity of mean aboveground net primary productivity (ANPP) to changes in climate variability (interannual precipitation variability, 
interannual temperature variability, interannual summer temperature variability, and interannual SPEI variability) in 6-y moving windows. Interannual variabilities 
of precipitation, temperature, summer temperature, and SPEI were calculated as the coefficient of variation of annual precipitation, and SDs of annual mean 
temperature, summer mean temperature and annual SPEI, respectively. The system-level sensitivity of ANPP was interpolated among 48 sites via ordinary 
kriging. (A‒D) Maps of the sensitivity of ANPP to climate variabilities evaluated using scenario exploration analysis (i.e., a nonlinear approach). (E‒H) Maps of the 
sensitivity of ANPP to climate variabilities evaluated using a GLS regression (i.e., a linear approach).
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global ecosystem models. Finally, our findings emphasize the 
importance of considering nonlinear dynamics of drylands to 
accurately forecast potential biosphere feedback to the climate 
system.

Materials and Methods

Datasets. The Information and Research Institute of Meteorology, Hydrology, and 
Environment (IRIMHE) of Mongolia monitored climate variables (daily mean air 
temperature and precipitation) and ANPP at 48 meteorological observation sites. 
These sites are widely distributed across Mongolian grasslands (spanning 2,160 
km in linear distance from the western to eastern Mongolia and 1,050 km from 
the northern to southern Mongolia; SI Appendix, Fig. S2 and Table S1) in 1978 
to 2017 (note: at some sites, the time series started after 1979). ANPP was calcu-
lated as the mean of aboveground plant biomass harvested from four “1 × 1 m”  
quadrats randomly placed within each station at the beginning, middle, and 
end of August, within the peak season of plant growth (56, 57). At each harvest, 
the locations of the sampling quadrats were moved within each site to avoid the 
effects of harvesting on the ANPP measures. In addition, we harvested only the 
current-year shoot of the shrub species to ensure that harvested plant materials 
can approximate ANPP. Although the number of samples at one time was rel-
atively small, repeated measurements of aboveground plant biomass during 
the peak growing season would allow the estimation of ANPP at each site. Each 
station was fenced to avoid damage to observation equipment by livestock. Our 
time-series analyses require continuous and equidistant data (16, 17); there-
fore, we imputed missing values for ANPP up to a maximum of five consecutive 
years using a Kalman smoother algorithm (58). Sites that had more than five 
consecutive missing years were removed from the analysis, resulting in 48 of 70 
candidate meteorological sites. Toward lower latitude sites, the long-term MAP 
generally decreased whereas the MAT increased (Fig. 1 A and B and SI Appendix, 
Table S1). Mongolia is characterized by a dryland climate, and ~70% of annual 
precipitation falls between June and August. In addition, we observed increasing 
growing degree days with rising annual mean temperature and summer mean 
temperature over time (SI Appendix, Fig. S3). As such, our climate measures are 
conducted on an annual basis, including extreme climatic events in summer, such 
as drought and extreme precipitation over a long period of time. The vegetation 
type across all sites was grasslands, including forest steppe, steppe, and desert 
steppe (SI Appendix, Table S1). Across the datasets of all the 48 sites, 92.7% of 
ANPP values (ranging from 77.5 to 100%) remained fixed (not imputed) over 
the time series (SI Appendix, Table  S1). There were no missing values for the 
climate variables.

Data Processing. At each meteorological site, annual precipitation was calcu-
lated as the sum of daily precipitation across a year. Annual mean temperature 
and summer mean temperature were calculated as the average of mean daily air 
temperature across a year and the average of mean daily air temperature between 
June and August (i.e., a growing season), respectively. Here, a year was defined 
from the beginning of September in the preceding year to the end of August in 
the focal year. We focused on the role of annual mean temperature as well as 
summer mean temperature in driving ANPP in the following analyses. Previous 
studies have suggested that both annual and summer temperatures can affect 
plant productivity, especially in cold regions (26, 33, 59). We also calculated grow-
ing degree days (°) as the sum of mean daily temperature above 10 ° in a year.

We calculated the aridity index, known as SPEI, which integrates both pre-
cipitation and temperature (36). To achieve this, we used monthly potential 
evapotranspiration and precipitation data and calculated monthly SPEI with a 
12-mo integration period, as previously suggested (10). Negative SPEI values 
indicated more arid conditions. Next, we calculated the annual SPEI as the mean 
of the monthly SPEI from the beginning of September in the preceding year to 
the end of August in the focal year.

To quantify climate variabilities, we aggregated yearly data in 6-y moving 
windows and calculated the coefficient of variation of annual precipitation and 
SDs of annual mean temperature, summer mean temperature, and annual SPEI. 
We used the SDs of annual mean temperature, summer mean temperature, and 
annual SPEI to avoid interference caused by divisions by their mean values closer 
to zero. The mean ANPP for each window was also calculated. This approach (11) 
allowed us to directly test the causal effects of climate variability on plant primary 

productivity. We decided to use overlapping window analyses because nonover-
lapping windows reduce the time-series length and may undermine the efficacy 
of time-series analysis (16, 17). The potential effects of the overlapping nature of 
the data on our results were addressed by developing a null test with a surrogate 
time-series (refer to the next section). To examine the robustness of our results 
to different time windows, we repeated the time-series analysis using data with 
4- and 5-y moving windows.

Long-Term Trends in Regional Climate. Long-term trends in climate var-
iables and their variabilities across Mongolia were visualized using a gener-
alized least-squares (GLS) regression with the site as a random effect and the 
first-order autoregressive processes (AR1). Annual precipitation did not change 
significantly across the 48 sites from 1978 to 2017 (SI Appendix, Fig. S3A). Over 
the same period, annual mean temperature and summer mean temperature 
increased (SI Appendix, Fig. S3 B and C). Growing degree days also increased 
steadily over time (SI Appendix, Fig. S3D). Because of rising temperature despite 
no changes in precipitation amount, annual SPEI has declined, indicating that 
aridity has increased over time (SI Appendix, Fig. S3E). Furthermore, interannual 
precipitation variability in 6-y moving windows showed no directional change 
(SI Appendix, Fig. S3F). Interannual variabilities of annual mean temperature 
and SPEI have increased significantly over time (SI Appendix, Fig. S3 G and H).

Vegetation Shifts along Climatic Gradients. Vegetation data are not available 
for the same time-series of ANPP and climate because vegetation surveys were 
not conducted simultaneously with ANPP measurements. Instead, we used recent 
observational data of vegetation between 2012 and 2019 at or near the meteor-
ological sites (SI Appendix, Table S2). The sampling locations near the meteoro-
logical sites were located on flat areas or gentle slopes where no livestock dung 
or plants damaged by grazing was evident (i.e., a similar condition to the fenced 
meteorological sites). At each location, plant species composition was sampled 
annually at the beginning of August between 2012 and 2019 (note: observa-
tion years slightly varied among the locations). Plant species composition was 
determined along two 50-m permanent lines. Along each line, a 50-cm pole was 
placed at 25-cm intervals (i.e., 201 points in total), and all plant individuals whose 
leaves and/or stems touched the pole were identified, and the total number of 
touches were counted. The abundance of each plant species was then determined 
by dividing the total number of touches for each species by the total number of 
points along a line. Data on plant species composition along the two lines were 
pooled across observation years. To confirm the potential vegetation shifts along 
climatic gradients across Mongolia (34), we used a generalized linear model with 
a quasibinomial error structure and a logit link function to analyze the changes 
in the relative abundance of C3/C4 species, annual/perennial species, and grass/
forb/shrub species (defined based on the existing literature) (34, 60) according to 
long-term MAP and MAT at each site (SI Appendix, Fig. S4). In accordance with the 
previous report across Mongolia (34), the relative abundance of C4 (SI Appendix, 
Fig. S4 A and B) and annual species (SI Appendix, Fig. S4 E and F) increased with 
decreasing precipitation and increasing temperature.

Data Analysis. To determine the potential causal effects of climate variables and 
their variabilities on ANPP and mean ANPP in moving windows, we used the EDM 
method to detect causality [i.e., CCM (16)]. The basic concept of CCM is to use the 
prediction between variables as a test for causality. If variable X (e.g., precipitation) 
had a causal effect on variable Y (e.g., productivity), then the causal information 
of variable X should be present in Y. The attractor recovered for variable Y should 
be able to predict the state of variable X. The prediction skill of cross-mapping 
(cross-map skill) was measured using Pearson’s correlation coefficient (ρ) between 
the predicted and observed X values. This procedure was repeated using a subset 
of the time series X with different lengths. When the cross-map skill from variable 
Y to X improves with the time-series length (i.e., convergence), variable X has a 
causal effect on Y (16). Theoretical details of the CCM algorithm can be found in 
previous studies (16, 17).

Prior to CCM analysis, all time-series data were standardized to have zero mean 
and unit variance. Throughout the analysis, the prediction skill was evaluated 
based on Pearson’s correlation coefficient (ρ) using leave-one-out cross-validation. 
First, we used the S-map (sequential locally weighted global linear maps) (18) 
to determine the appropriate embedding dimension (E) and to check the non-
linearity (indicated by a nonlinear localization parameter θ) of the time series of 
ANPP and mean ANPP in moving windows. According to Takens’ Theorem, the D
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true dynamics of the system can be reconstructed by a set of time-lagged coordi-
nates of a single time series (16, 17). The embedding dimension is the number 
of time-lagged coordinates used for reconstructing the state space (16, 17). In 
the majority of real-world scenarios, the embedding dimension is not known 
beforehand and requires estimation. The appropriate embedding dimension 
(E), that is the embedding dimension showing the best performance of EDM 
predictions, depends on several factors, including system complexity, time-series 
length, and noise (16). The S-map is a model-free method that predicts the near 
future using local linear regression under a certain embedding dimension, and 
is a tool for evaluating whether a system displays linear or nonlinear dynamics 
over time (18). S-map forecasts the trajectory of a target system state by a locally 
weighted linear regression using the all data points in the state space (17, 18).

We evaluated the predictability of the S-map for all possible combinations of 
E = 2–8 (with an increment of 1) and θ = 0–10 (with an increment of 0.1). We 
selected the optimal values of E and θ, under which the best prediction skill (ρ) 
was obtained. The nonlinear localization parameter θ determines the degree to 
which the points are weighted when fitting a local linear map. When θ = 0, all 
points are equally weighted such that the local linear map is identical for different 
points in the reconstructed state space (17, 18). In this case, the S-map is identical 
to the global linear map. When θ > 0, nearby points in the state space receive 
a larger weight, and the local linear map can vary in the state space to accom-
modate state-dependent, nonlinear behavior (17, 18). The weighting function 
in the S-map is defined as the form of an exponential decay kernel (18), w(d) = 
exp (−θd/dm). Here, d is the Euclidean distance between the predictee and each 
time point, and dm is the mean Euclidean distance of all paired time points. We 
confirmed that ANPP and mean ANPP in all (4-, 5-, and 6-y) moving windows 
generally displayed nonlinear dynamics (SI Appendix, Table S3).

The significance of CCM was judged by comparing the cross-map skill ρ 
at the maximum time-series length as well as convergence (the difference 
between ρ at the maximum and minimum time-series lengths) between the 
original and surrogate time-series data (17, 61, 62). We randomly generated 
1,000 surrogate time-series of causal climate variables by randomizing the 
phases of a Fourier transform, which preserved the power spectra or autocor-
relation of the cross-mapping target time series (63). To apply CCM with the 
original and surrogate time-series of climate variables to predict the time series 
of productivity, we calculated the cross-map skill ρ at the minimum (optimal 
embedding dimension E+1) and maximum time lengths for 1,000 surrogate 
time-series and the original time series. The P-value was then estimated as the 
number of surrogate time-series data showing a higher ρ with the maximum 
time-series length as well as a higher convergence than those for the original 
time-series data, divided by the total number of surrogate data (61). Here, we 
added 1 to the numerator and denominator to correct for finite sampling. In 
addition, because climate would exhibit time-delayed effects on productivity 
(often termed legacy effects) (11, 15, 27, 64), we considered time lags (time to 
prediction tp of a potential causal time-series) in cross-mapping, i.e., lagged 
CCM (52). We examined the time-delayed effect from 0 to −3 time lags (years 
or moving windows). We report the best result (highest ρ with the maximum 
time length) among the lagged CCM analyses (SI Appendix, Tables S4‒S7).

To determine the metasignificance of CCM tests across Mongolian grass-
lands, we applied a recently proposed method to combine P-values and har-
monic mean P-values (37). Note that the metasignificance may be relatively 
conservative compared to other methods to combine P-values because this 
method controls for family-wise error rate and, importantly, is robust to interde-
pendent samples of P-values. In addition, we compared the cross-map skill with 
the maximum time length among the causal climate variables using paired 
Wilcoxon tests.

We further tested the directionality of the responses of plant productivity to cli-
mate variables using scenario exploration with multivariate EDM (17, 42, 43, 65).  
In nonlinear systems, drivers generally have an effect that is state-dependent; 

the strength and direction of the effect depend on the current state of the system 
(17, 21, 42, 65).

For each historical time point t (a year or a moving window), we used S-maps 
(18) to predict ANPP at time t + 1 with a small increase (+ΔZ/2) and a small 
decrease (−ΔZ/2) in the climate variables at time t, Z(t). We used ΔANPP/ΔZ to 
approximate the effects of climate variables at time t. A higher positive ΔANPP/ΔZ 
value suggested a more sensitive positive causal effect of the climate variables, 
and vice versa. We then determined the average of ΔANPP/ΔZ at each historical 
time point across the time series to represent the system-level sensitivity of ANPP 
to climate at each site, as proposed in a previous study (48). We used 50% of the 
SD of the observed climate variables, Z(t), as ΔZ. This value corresponded to ΔZ = 
15.6–48.4 mm (with a mean of 27.7 mm) and 0.37 to 0.73 ° (with a mean of 0.51 °)  
across sites for annual precipitation and annual mean temperature, respectively. 
These values were generally comparable to the prediction range of IPCC AR6 
(66) that MAP and MAT between 2080 and 2100 increase by 10 to 30% and 1.5 
to 5 °, respectively, over middle latitudes compared to MAP and MAT between 
1850 and 1900. The magnitude of change, ΔZ, in scenario exploration can thus 
be determined depending on the research contexts (17).

Because we treated time-series across all sites equivalently, we a priori selected 
parameters in the S-map procedure that worked across all the time series, as 
previously suggested (43): E = 3 and θ = 4 to predict ANPP changes against 
small perturbations of climate in a given year, and E = 3 and θ = 0.3, to predict 
mean ANPP changes against small perturbations of climate variabilities at a given 
moving window.

To compare the results based on scenario exploration with those using a linear-
based approach, we used a GLS regression to quantify the responses of plant 
productivity to climate variables. We estimated the sensitivity of productivity to 
climate variations as the linear regression slope of productivity against climate 
variables to be comparable with the methods used in previous studies (8, 10, 
11, 24). Considering the autocorrelations among observations across time, we 
included a term that corrected for first-order AR1 in the models. We used the 
“gls” function in the “nlme” package in R to perform these analyses. In addition, 
we compared the prediction accuracy based on CCM and GLS, and we examined 
the difference between terminal ρ from CCM and the prediction accuracy (a 
correlation coefficient between observed and predicted values) from GLS using 
paired Wilcoxon test.

Finally, we visualized the geographic patterns in the sensitivity of ANPP to 
climate and its variability across Mongolia by interpolating the sensitivity val-
ues across sites. All spatial interpolations were performed with the “autoKrige” 
function in the automap package in R. All other data analyses were performed 
with R software (67) using the “rEDM,” “harmonicmeanp,” “SPEI,” “nlme,” and 
“automap” packages.

Data, Materials, and Software Availability. The datasets generated during 
and/or analyzed during the current study are available through figshare (68).
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